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Chapter 1 Goal of the project 
Mathematical operations are central part of many algorithms. In order to achieve faster computational speeds, these operations need 

to be efficient. Integer multiplication is one of those operations. Classrooms everywhere teach the classic method of multiplying each 

digit on one number with a digit of the other resulting in a complexity of   .  

Karatsuba introduced a method that required   . His method used Divide & Conquer. 

In this project, a similar algorithm is introduced. The algorithm uses the intuition of using Divide and Conquer as in the Karatsuba, but 

this time, squares of differences are utilized instead. Various optimizations are then discussed and implemented to improve its 

computational efficiency. The end effect is a faster algorithm which improves in the constant k on  

Chapter 2 Karatsuba Multiplication Algorithm  
Before we go into discussion of this other method we will briefly describe the essence of the Karatsuba. 

Given two digit numbers  each of size , we can rewrite them using a integer  (choosing ) such that 

 

 

Hence multiplying the two together and expanding, 

 

 

So in order to solve  requires computing four sub-products (i.e. ) , two shift operations (i.e.  ,and 

two additions. 

To compute the sub products (i.e. ) the same method is applied again to each one of the terms. Splitting a 

problem and recombining it again to solve it is known as Divide and Conquer. The method of solve sub problems using the same 

method as the original problem is known as recursion. 

In its current form, the worst case running time , where  here is the number of digits, can be expressed as 

 

When n = 2,  

 

) represents the recursive splitting of the problem into four smaller sub problems each of size , and  represents the additions, 

required for merging once the four sub problems have been computed. The second formula, , represents case when only two 

numbers remain. At this point a simple multiplication is performed without need of recursion. 

It can be shown that  . So all this resulted in the same complexity as the “classroom” multiplication. 

However, Karatsuba further observed that,  (the middle terms) could be re-written as follows 
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Hence the product  could be fully expressed as follows 

 

Equation 2-1 

So now solving  consists of computing three instead of four sub products (i.e. ), two shift 

operations, four additions and two subtractions. Additions, subtraction are linear operations. Shifting is constant time.  

In this new form, the worst case running time , where  here is the number of digits, can be expressed as 

 

When n = 2,  

 

 

It can be shown that  . In this form, the method became asymptotically better than 

the “classroom” multiplication. It is also worth mentioning that this method only is better when two number of equally large size are 

being computed. 

Below we will introduce two known mathematical relations which will be central to our discussions. 

Chapter 3 Square of a Difference 
 

Equation 3-1 

Chapter 4 Square of a Sum 
 

Equation 4-1 
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Chapter 5 Computing the product of two numbers using the Square of a 

Difference 
We can rewrite the square of a difference equation by rearranging as follows. 

 

Equation 5-1 

This form now allows us to compute the product of two numbers by computing: 

 SQUARES: 3 squaring operations on integers of size up to n ,  

 ADDITIONS: 1  addition operation on an integer of size up to 2n,  

 SUBTRACTIONS: 2 subtractions one being in on integer of size up to n and the other up to 2n, finally, 

  DIVISION: 1 division by two on an integer of size up to n 

In this form, the worst case running time , where  here is the number of digits, can be expressed as 

 

When ,  

 

) represents the recursive splitting of the problem into three smaller sub problems each of size , and  represents the 

additions, subtraction, and division described above. The second formula, , the represents case when only two numbers 

remain. At this point a simple square is performed without need of recursion. 

It can be shown that  . Hence the worst case running time equals that of the Karatsuba 

method described earlier. 

The following algorithm describes the process. 

 
 
 
 
 
 
 
 
 
The complexity of the multiplication of is now reduced to complexity of computing the square of a number. 
We will now discuss the computing the square of a number using the square of a difference. 

  

ComputeProduct(a, b) 

  aMinb ← a - b 

  aSquared ← ComputeSquare(a) 

  bSquared ← ComputeSquare(b) 

  aMinbSquared ← ComputeSquare(aMinb) 

  productAB ← DivideByTwo(aSquared + bSquared – aMinBSquared) 

  return productAB 

Algorithm 5-1 
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Chapter 6 Computing the Square of a Number using the Square of a Difference 

and Square of a Sum 
Given a number  each of size , we can rewrite it using by choosing integer , preferably choosing . Hence 

 

 

 

 

 

 

Hence the  can be expressed as, 

 

Expanding using the sum of squares gives, 

 

Equation 6-1 

Rearranging the sum of differences relation  can be expressed as, 

 

We can substitute the term  in the equation (1) to get 

 

Equation 6-2 

Now we have arrived into expressing  in terms three square operations  two shift operations  and three 

additions and two subtractions. The square can then be solved recursively and applying the same derived formula. 

 

 

 

 

This form now allows us to compute the square of two numbers by computing: 

 SQUARES: 3 squaring operations on integers of size up to n / 2 ,  

 ADDITIONS: 1  addition operation on integers of size up to 2n,  

 SUBTRACTIONS: 2 subtractions one being in on integer of size up to n and the other up to 2n, finally, 

Examples 

Given    
then   ,choose    therefore , and  

 
Given   

then   , choose    therefore , and  

 

Example 

Given   
then   , choose  m , , and ,  
hence 
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 SHIFTS: 2 shifts 

Addition and subtraction are linear while shifting can be done in constant time. Hence the Square remains the bottleneck. But we shall 

see in the next section we can use divide and conquer to further simplify the problem. 

This form splits result in a worst case running time of  . Hence the worst case running 

time equals that of the Karatsuba method described earlier. 

Asymptotically the result looks the same. In further later discussion we will discussion we analyze whether using the sums of difference 

can lead to better results in , part of  

But first we unfold the algorithm for computing squares using the sums of differences. 

The algorithm above takes 6 parameters as input;  

 result[] contains the result of squaring stored as an array of digits,  

 a[] represent the number to be squared also stored as an array of digits,  

 fromResult and toResult represent where in the result array the square of the number in a[] has to be stored, and  

 from and to represent the number in a[1..n] that need to be squared. 

ComputeSquare(result[], a[], fromResult, toResult, from, to) 

  if from == to then       

    if a[to] = 1 then 

      result[toResult] = 1 

    else if a[to] = 2 then        

      result[toResult] = 4 

    else if a[to] = 3 then 

      result[toResult] = 9 

    else if a[to] = 4 then 

      result[fromResult] = 1 

      result[toResult] = 6 

    else if a[to] = 5 then 

      result[fromResult] = 2 

      result[toResult] = 5 

    else if a[to] = 6 then 

      result[fromResult] = 3 

      result[toResult] = 6 

    else if a[to] = 7 then 

      result[fromResult] = 4 

      result[toResult] = 9 

    else if a[to] = 8 then 

      result[fromResult] = 6 

      result[toResult] = 4 

    else if a[to] = 9 then 

      result[fromResult] = 8 

      result[toResult] = 1 

    return result 

             

  split = Ceiling((from + to) / 2) 

  splitResult = toResult - 2 * (to - split + 1) + 1 

       

  int[] aMinusB = new int[to - split + 1]       

  int[] resultAMinB = new int[2 * aMinB.Length] 

 

  aMinB = ComputeDifference(a, from, split, to) 

  result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1) 

  result = ComputeSquare(result, a, splitResult, toResult, split, to) 

  resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0, 

aMinusB.Length - 1) 

  result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

  return result 

Algorithm 6-1 
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Example 

Here  is being computed, using the formula, three squares need to be computed. The tree below shows how this can be 

done. The left leaf represents the term used to compute  , the middle leaf represents the term used to compute , and the right leaf 

represents the term used to compute .  

 
 
  
 

 

 

 

 

 

 

Example 

Given   ,  
then  would initially be an array of twice the size of the input.  ComputeSquare 
would then split  in half, in this case 8 and 2. As shown below, 

a 8 2 

result     

 
  would then be computed and separate array to computes 
aMinbResult would be created as follows, 

aMinb 6 

aMinResult 3 6 

 
The square of  would next be computed and placed as follows: 

a 8 2 

result 6 4   

 
Similarly would be computed and placed as follows: 

a 8 2 

result 6 4 0 4 

 
   Then  would be computed and placed as follows: 

aMinb 6 

aMinResult 3 6 

 

Finally, a merge  into  using the formula 
 would be performed, yield the finally result, 

a 8 2 

result 6 7 2 4 

 

1 

1234 

123456789 

56789 55555 

12 34 56 789 55 555 22 733 500 

2 1 3 4 1 2 2 0 5 6 1 7 89 82 33 50

0 

7 26 5 5 0 555 5 5 0 5 

7 2 8 2 6 3 8 3 0 2 6 4 5 5 0 5 0 5 
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Empirical Results 

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were 

randomly generated. 

Size of number to square Result (seconds) 

100000 41 

200000 124 

300000 257 

400000 380  

1000000 1331 

2000000 4020 

 

Conclusion 

Solving  using   when we get  , which agrees when (400000, 380). Therefore 

the empirical results agree with theoretical analysis in asymptotic bounds 

  

41 124257380
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Chapter 7 Space Complexity Optimization 
As the algorithm described above illustrated, the result of the left and middle leafs of the tree are both stored in one array of size . 

However the right leaf which stores the result of  uses a separate array. In this section we will analyze the worst case space 

complexity of the algorithm based on this observation. 

Given a large integer of size n therefore the left and middle sub-leaf would require an array of size . Computing the right sub tree 

would require a bit more for each recursion it makes on its right sub leafs. 

To illustrate visually, below, is a diagram that shows the storage of the right sub-leaf. At each level, during the processing of the right 

sub-leaf a new array is created of half the size of the level above it. This continues happening until . 

 

 

 

 

 

 

 

The height of the tree is , and observing that successive storage sizes are separated by a factor of , then summing the space 

usage  

Hence the space complexity is therefore worst case  
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Chapter 8 Time Complexity Optimization 
Raw as it is now the complexity of squaring is exactly like the Karatsuba. Besides being simple, does using sums of differences   

 

imply better time complexity than the textbook form of the Karatsuba? 

 

The un-optimized algorithm using the square of difference presented earlier is equivalent in many ways to the Karatsuba. So we will 

analyze and present various aspects that have potential of improving it whilst still keeping it simple. 

Optimizing on the number of primitive operations required 
We saw that on the original Karatsuba, each level required, solving three multiplications, two shift operations, four additions and two 

subtractions.  

In the un-optimized sum of difference method, it requires solving three square operations, two shift operation and three additions and 

three subtractions (the extra subtraction comes about as a result on computing , because some instances would require 

 instead.  

The amount of primitive operations are the same for both methods, i.e. four additions and two subtractions on the Karatsuba, and 

three additions and three subtractions on the one using sums of differences.  

We see however that the only one of the subtraction in  gets to be unused. Hence we can attempt an improvement, instead of 

computing them both all the time we can compute both when it is absolutely necessary. 

Modified Algorithm 

ComputeSquare(result[], a[], fromResult, toResult, from, to) 

  if from == to then       

    if a[to] = 1 then 

      result[toResult] = 1 

    … 

    else if a[to] = 9 then 

      result[fromResult] = 8 

      result[toResult] = 1 

    return result 

             

  split = Ceiling((from + to) / 2) 

  splitResult = toResult - 2 * (to - split + 1) + 1 

       

  int[] aMinusB = new int[to - split + 1]       

  int[] resultAMinB = new int[2 * aMinB.Length] 

 

  aMinB = ComputeDifference(a, split, to, from, split - 1) 

  if not aMinBIsCorrect 

    aMinB = ComputeDifference(a, from, split - 1, split, to) 

  result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1) 

  result = ComputeSquare(result, a, splitResult, toResult, split, to) 

  resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0, 

aMinusB.Length - 1) 

  result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

  return result 

Algorithm 8-1 
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Here the only change is the replacement of the statement 

aMinB = ComputeDifference(a, from, split, to) 

 

with 

aMinB = ComputeDifference(a, split, to, from, split - 1) 

if not aMinBIsCorrect 

  aMinB = ComputeDifference(a, from, split - 1, split, to) 

 

 

 

 

 

 

Empirical Results 

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were 

randomly generated. 

Size of number to square Result (seconds) 

100000 38 

200000 114 

300000 236 

400000 345 

1000000 1263 

2000000 3603 

The graph below presents a comparison between optimizing primitive operation and the optimized version 

Co 

Conclusion 

Reducing the amount of primitive reduces the time spent but not significantly within the asymptotical bounds.  

0

1000

2000

3000

4000

5000

0 500000 1000000 1500000 2000000 2500000

Optimized Primitive Operations

Primitive Operations

Unoptimized

Examples 

Given    
 , and , 

The first algorithm would compute both  and  and return  
The second would attempt compute  fail then attempt   

 
Given   

The second algorithm would need only one attempt of   to succeed. 
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Optimizing using  
The un-optimized algorithm uses the formula  to compute the square of all 

numbers of size . Is that really necessary though? The answer is no.  There are cases when we can resort to more efficient 

alternatives. 

Pruning the tree 

The answer lies in the simpler form of the equation above i.e. . In this form, the product  can 

be computed linearly in the cases when , or   have size 1. Hence instead of resorting a third square we directly compute .  

 

 

 

 

Example 

In chapter 6, an example of computing  was given. It required computing 58 squares. Here the same tree can now be 

pruned at the bottom resulting in the need of computing only 37 squares (represented by each box). Note also whenever pruning 

occurs, the need to ComputeDifference is also eliminated. Note that the leaves that lead to nowhere are the ones that have been 

pruned. 

 

 

 

 

 

 

 

Balancing the tree 

Another improvement we can make it to balance the leaves. We observe in many places where split an odd sized number we obtain 

three numbers of unequal size, with one of being one size smaller than the other two.   

 

 

 

An alternative can be to make the tree even-sized by first splitting it with the left sub-tree having being one-digit number. Then 

continue as always. 

Example 

Given   ,  

 Currently we would have to compute  

 But instead we can compute  
 
  

Example 

Given   ,  
 We choose , hence we obtain , , and  
 Notice  is one size smaller than other 2 
 
  

1 

1234 

123456789 

56789 55555 

12 34 56 789 55 555 22 733 500 

2 3 4 2 2 5 6 7 89 33 7 5 5 555 5 5 0 

7 3 8 3 5 5 
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The worst case running time for tree in the left is ,  

The worst case running time for the right tree becomes 

, bearing in mind, multiplication is worse  

 

Therefore 

 

Example 

We now balance  below. Compared to the one in chapter 6 which required computing 58 squares, this one only requires 

39 squaring operations 

 

 

 

 

 

 

 

Example 

We now prune and balance  to obtain the combined effect below. The tree below now requires only 31 operations.  

 

 

 

1 

123456789 

23456789 

2345 6789 4444 

22 89 67 44 0 44 22 45 23 

8 9 0 2 2 0 6 7 0 4 4 0 4 4 0 4 5 1 2 2 0 2 3 1 

 

 

  
1 
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Modified Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The change here is the addition of the statement which handles the balancing mechanism. 

if (split - from) < (to - split + 1) 

         split = from + 1; 

 Pruning is implemented and maintained by the introduction of the  aIsOneDigit = split == from + 1 branching 

to avoid ComputeDifference as follows  

ComputeSquare(result[], a[], fromResult, toResult, from, to) 

  if from == to then       

    if a[to] = 1 then 

      result[toResult] = 1 

    … 

    else if a[to] = 9 then 

      result[fromResult] = 8 

      result[toResult] = 1 

    return result 

         

  split = Ceiling((from + to) / 2) 

  if (split - from) < (to - split + 1) 

    split = from + 1; 

  aIsOneDigit = split == from + 1 

  splitResult = toResult - 2 * (to - split + 1) + 1 

       

  int[] aMinusB = new int[to - split + 1]       

  int[] resultAMinB = new int[2 * aMinB.Length] 

 

  if not aIsOneDigit 

    aMinB = ComputeDifference(a, from, split, to) 

  result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1) 

  result = ComputeSquare(result, a, splitResult, toResult, split, to) 

 

  if aIsOneDigit 

    result = Plus2AB(result, a, a[from], to, split, toResult - aMinB.Length) 

  else 

    resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,       

      aMinusB.Length - 1) 

    result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

return result 

Algorithm 8-2 

   

1 

123456789 

23456789 

2345 6789 4444 

22 89 67 44 0 44 22 45 23 

8 9 2 2 6 7 4 4 4 4 4 5 2 2 2 3 
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if not aIsOneDigit 

        aMinB = ComputeDifference(a, from, split, to) 

         

Computing Plus2AB instead squaring the aMinB and Merging through 

if aIsOneDigit 

  Plus2AB(ref result, a, a[from], to, split, toResult - aMinB.Length) 

      else 

resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,        

  aMinusB.Length - 1) 

  result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

Empirical Results 

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were 

randomly generated. 

 

 

Conclusion 

The gain observed was significant in altering the value of .  
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Optimizing using  
We observed in the previous section that  could be used to compute the  instead of the longer 

form, if that is,  can be computed linearly. In section, we will that we can in fact use special cases of  to determine 

whether is possible. 

Case  

The first special case is when . We therefore see that  

 

This lead to the observation that only  need be computed, shift and merged to compute .  

The worst case running time becomes , whenever this situation occurs. 

Case  

Suppose  , where k is an integer  and p is positive integer, then once we have computed  we can 

linearly compute , using the following relation 

 

Which when expanded, 

 

In this form, is already known,  can be computed linearly since k is a single digit integer,  can also be computed in constant 

time since it is single digit square,  and  are shift operations and thus negligible. Hence  has a worst case 

 since only two squares need be computed and merged. 

 

 

 

 

 

 
 

 

 

 

 

 

 

Example 

Given   ,  
 We choose , hence we obtain , , and  
 Thus we only need to compute , and the rest can be performed linearly to obtain  
 
Given  
 We choose , hence we obtain , , and ,  

Hence  

Hence once is computed,  can be solved linearly. 
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Example 

In chapter 6, an example of computing  was given. It required computing 58 squares. Here the same tree can now be 

optimized using information based from computing . This results in the need of computing only 35 squares (represented by 

each box). Note that the leaves that lead to nowhere are the ones that have been pruned. 

 

 

 

 

 

 

 

 

 

Modified Algorithm 

 

ComputeSquare(result[], a[], fromResult, toResult, from, to) 

  if from == to then       

    if a[to] = 1 then 

      result[toResult] = 1 

    … 

    else if a[to] = 9 then 

      result[fromResult] = 8 

      result[toResult] = 1 

    return result 

             

  split = Ceiling((from + to) / 2) 

  splitResult = toResult - 2 * (to - split + 1) + 1 

       

  int[] aMinusB = new int[to - split + 1]       

  int[] resultAMinB = new int[2 * aMinB.Length] 

 

  aMinB = ComputeDiff(a, from, split - 1, split, to, aMinBFrom, aMinBTo, aIsLarger) 

  result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1) 

  if (aMinBTo < aMinBFrom) 

    CopyResultAToBAnd2AB(result, fromResult, splitResult - 1, toResult) 

    return result 

  else if (aMinBTo == aMinBFrom)  

    result = ComputeResultAToBLinearly(result, a, fromResult, splitResult - 1, toResult,   

      from, split - 1, aIsLarger, aMinB[aMinBTo], aMinB.Length - aMinBFrom - 1) 

  else 

    result = ComputeSquare(result, a, splitResult, toResult, split, to) 

 

  resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0, 

aMinusB.Length - 1) 

  result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

  return result 

Algorithm 8-3 

1 

1234 

123456789 

56789 55555 

12 34 56 789 55 22 733 5 

1 3 1 2 5 1 7 89 82 33 7 26 5 5 5 

2 8 6 3 8 2 4 
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Empirical Results 

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were 

randomly generated. 

Size of number to square Result (seconds) 

100000 41 

200000 124 

300000 257 

400000 315 

1000000 1365 

2000000 3609 

 

 

Conclusion 

The results seem to suggest the now many number would be benefit from this optimization. Even though there better result as the 

number tended to be large, the gap was not significant. 
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Optimizing using Memoization 
Squaring using Karatsuba Method always result in the the tree sub-branching three ways everytime. Hence while squaring a large 

number the lower level of tree tend to become very dense and therefore a lot of number end up being re-computed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Could we do something about this redundancy? 

A solution could be to store pre-computed squares for number sizes are likely to contain redundancy, such that, whenever we 

encounter a number, we can just retrieve it and write it out in linear time. Storing pre-computed values that can be readily retrieved 

and used is what is known as Memoization. 

Dictionary data structures exist, that provide functionality to store a value using a key, and retrieve in constant time with that key. 

However they become in-efficient when too many records are stored. We therefore use this structure to store a fairly large number and 

its  corresponding square. For instance we can store all five digit number with their corresponding squares. 

This should change our running time formula to 

 

When n = 5,  

Example 

Suppose we given a 1 million digit number. Using Karatsuba we split the number and half 

and end up with 3-half a million sized number, then split those to end-up with 9-quarter a 

million digit number and so on, this will continue for  levels. We 

illustrate this in table below. 

Level of Tree Numbers to Square Number of Digits in each Number 

0 1 1000000 

1 3 500000 

2 9 250000 

3 27 125000 

4 81 62500 

5 243 31250 

6 729 15625 

7 2187 7812 

8 6561 3906 

9 19683 1953 

10 59049 976 

11 177147 488 

12 531441 244 

13 1594323 122 

14 4782969 61 

15 14348907 30 

16 43046721 15 

17 129140163 7 

18 387420489 3 

19 1162261467 1 

At level 17,  numbers of size 7 need to be computed, this show that from level and 

lower a lot of redundant computation occur. 
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We see the running becomes constant at a higher, but the asymptotic complexity still remains the same. 

Modified Algorithm 

 

The change to the algorithm is the addition of the lines 

  if (to – from <= 5) 

    Key = GenerateKeyFromArray(a[], from, to) 

  

    if MemoizedSquares.TryGetValue(Key, squareResult) 

      for i = squareResult.Length – 1; i >= 0; i— 

        result[toResult] = squareResult[i] 

        toResult— 

      return result 

 

Here the algorithm assume square for number upto 5 digit have be memorized in a dictionary called MemoizedSquares. To retrieve 

the square a key has to be constructed using 

Key = GenerateKeyFromArray(a[], from, to) 

ComputeSquare(result[], a[], fromResult, toResult, from, to) 

  if from == to then       

    if a[to] = 1 then 

      result[toResult] = 1 

    … 

    else if a[to] = 9 then 

      result[fromResult] = 8 

      result[toResult] = 1 

    return result 

      

  if (to – from <= 5) 

    Key = GenerateKeyFromArray(a[], from, to) 

  

    if MemoizedSquares.TryGetValue(Key, squareResult) 

      for i = squareResult.Length – 1; i >= 0; i— 

        result[toResult] = squareResult[i] 

        toResult— 

      return result 

          

  split = Ceiling((from + to) / 2) 

  splitResult = toResult - 2 * (to - split + 1) + 1 

       

  int[] aMinusB = new int[to - split + 1]       

  int[] resultAMinB = new int[2 * aMinB.Length] 

 

  aMinB = ComputeDifference(a, from, split, to) 

  result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1) 

  result = ComputeSquare(result, a, splitResult, toResult, split, to) 

  resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0, 

aMinusB.Length - 1) 

  result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

  return result 

Algorithm 8-4 
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Thereafter the square is retrieved in constant time from the dictionary and written back linearly into result. 

Empirical Results 

These results were obtained when running the actual implementation of the combined algorithm. The numbers producing the results 

were randomly generated. 

Size of number to square Result (seconds) 

100000 31 

200000 94 

300000 265 

400000 284 

1000000 1389 

2000000  

 

Conclusion 

No gain was seen in the empirical result even though the theoretical analysis seemed very promising. The loss in gain can be attributed 

to the implementation of the dictionary. Even thought retrieval is claimed to be in constant time, it may still be that the constant is still 

too high. Also generation of the key used for retrieval may be too costly. In our implementation, the key was a string representation of 

the number. To overcome these cost the solution may be to store even large square, but then again, the density of redundancy also 

drops.  
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Combined Effect 
In this section we present the final, algorithm, which consists of putting together all optimization that we discussed earlier into one 

algorithm. We exclude memorization, due to the poor results that were obtained from it. 

To illustrate the effect of combining all the methods, the tree below represents computing   

 

 

 

 

 

 

 

 

We notice that now 21 numbers need to be squared. This compared to 58 squares on the unoptimized looks promising 

  

1 

123456789 

23456789 

2345 6789 4444 

22 89 67 0 44 22 45 23 

8 2 6 4 4 2 2 
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Modified Algorithm 

 

 

 

 

ComputeSquare(result[], a[], fromResult, toResult, from, to) 

  while (a[from] = 0) and (from < to) 

   from++ 

  while (a[to] = 0) and (from < to) 

   to— 

 

  if from == to       

    if a[to] = 1 then 

      result[toResult] = 1 

    … 

    else if a[to] = 9 then 

      result[fromResult] = 8 

      result[toResult] = 1 

    return result 

             

  split = Ceiling((from + to) / 2) 

  if (split - from) < (to - split + 1) 

    split = from + 1; 

  aIsOneDigit = split == from + 1 

  splitResult = toResult - 2 * (to - split + 1) + 1 

       

  int[] aMinusB = new int[to - split + 1]       

  int[] resultAMinB = new int[2 * aMinB.Length] 

 

  if not aIsOneDigit 

    aMinB = ComputeDifference(a, split, to, from, split – 1,  

        aMinBFrom, aMinBTo, aIsLarger) 

    if not aMinBIsCorrect(aMinB) 

      aMinB = ComputeDifference(a, from, split - 1, split, to,  

          aMinBFrom, aMinBTo, aIsLarger) 

 

  result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1) 

  if aMinBTo < aMinBFrom 

    CopyResultAToBAnd2AB(result, fromResult, splitResult - 1, toResult) 

    return result 

 

  if (aMinBTo == aMinBFrom) and not aIsOneDigit 

    result = ComputeResultAToBLinearly(result, a, fromResult, splitResult - 1, toResult,   

        from, split - 1, aIsLarger, aMinB[aMinBTo], aMinB.Length - aMinBFrom - 1) 

  else 

    result = ComputeSquare(result, a, splitResult, toResult, split, to) 

 

  if aIsOneDigit 

    result = Plus2AB(result, a, a[from], to, split, toResult - aMinB.Length) 

  else  

    resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,  

        aMinusB.Length - 1) 

    result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult) 

  return result 

Algorithm 8-5 
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Empirical Results 

These results were obtained when running the actual implementation of the combined algorithm. The numbers producing the results 

were randomly generated. 

Size of number to square Result (seconds) 

100000 18 

200000 55 

300000 113 

400000 167 

1000000 656 

2000000 1963 

The graph below shows running time of the all methods that were implemented. The combined method is also included for comparison. 

Also note that the combined does not include memorization. 

 

 

Conclusion 

The combined effect was clearly much better than the un-optimized version of the algorithm. Its worst case running still shows a trend 

in  with its constant very much improved. Pruning and Balancing were major contributors in lowering the constant . 

Memoization is the only method that excluded in the combined effect.  
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Chapter 9 Conclusion 
The goal of this project was to demonstrate that multiplying number can also be done efficiently using the Karatsuba Algorithm with 

Sums of Differences. The results obtained from attempting to optimize squaring based on the properties of Sums of Difference ranged 

from insignificant (primitive and  ), good (branching and pruning), and worse (memorization). 

Encouragingly, the methods that improved the algorithm were also very simple, keeping the algorithm still simple and easy to 

understand. 

The positive results also seemed to reinforce the idea that, since squares have powerful properties, it seems promising to investigate for 

more of those that may improve the worst case running time even more significantly in the area of Large Integer Multiplication. 
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Chapter 10 Appendix 
using System; 

using System.Collections.Generic; 

using System.Text; 

 

namespace DodomaAlgorithm 

{ 

  using System; 

  using System.Collections.Generic; 

  using System.Text; 

  using System.Collections; 

 

  class Program 

  { 

    static Dictionary<String, byte[]> squares = new Dictionary<String, byte[]>(); 

    static int counter = 0; 

 

    static void Main(string[] args) 

    { 

       // This commented out part is used for the memozation optimizition 

      /* 

      for (Int64 i = 100000; i < 1000000; i++) 

      { 

        int inputPositionA = 0; 

        StringBuilder inputA = new StringBuilder(i.ToString()); 

        byte[] numberA = new byte[inputA.Length]; 

        for (inputPositionA = 0; inputPositionA < inputA.Length; inputPositionA++) 

        { 

          numberA[inputPositionA] = Convert.ToByte(inputA.ToString(inputPositionA,  

              1)); 

        } 

        int count = 0; 

        squares.Add(i.ToString(), Integer_BinarySquare(numberA, ref inputA, ref  

          count)); 

      } 

      */ 

      // ComputeSquares(new StringBuilder("326926509420845")); 

      // The following part generates a random number and the call ComputesSquares 

      Random randomNumber = new Random(); 

      counter = 0; 

      //squares.Clear(); 

 

      for (int j = 0; j < 1; j++) 

      { 

        StringBuilder largeRandomNumber = new StringBuilder(); 

        for (int i = 0; i < 40000; i++) 

        { 

          int value = randomNumber.Next(11111, 99999); 

          largeRandomNumber.Append(value); 

        } 

        ComputeSquares(largeRandomNumber); 

      } 

      //ComputeFactors1(new StringBuilder("56784487")); 

      Console.Read(); 

    } 

 

    static void ComputeSquares(StringBuilder Input) 

    { 
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      int inputPosition = 0; 

      byte[] numberA = new byte[Input.Length]; 

      inputPosition++; 

      for (inputPosition = 0; inputPosition < Input.Length; inputPosition++) 

      { 

        numberA[inputPosition] = Convert.ToByte(Input.ToString(inputPosition, 1)); 

      } 

 

      DateTime startTime = DateTime.Now; 

      Console.WriteLine(startTime); 

 

      int count = 0; 

      byte[] a = Integer_BinarySquare(numberA, ref Input, ref count); 

 

      counter = count; 

      DateTime stopTime = DateTime.Now; 

      Console.WriteLine(stopTime); 

      Console.WriteLine("operations =" + count + ";"); 

      TimeSpan duration = stopTime - startTime; 

      Console.WriteLine(inputPosition); 

      Console.WriteLine(duration); 

    } 

 

    static byte[] Integer_BinarySquare(byte[] a, ref StringBuilder aString, ref int count) 

    { 

      byte[] result = new byte[2 * a.Length]; 

      byte[] input = new byte[a.Length]; 

      count = 0; 

      ComputeSquaresBinaryMethod(ref result, a, 0, 2 * a.Length - 1, 0, a.Length - 1, ref   

        count); 

      return (result); 

    } 

 

    static void ComputeSquaresBinaryMethod(ref byte[] result, byte[] a, int fromResult, int  

      toResult, int from, int to, ref int count) 

    { 

      // This is the CORE PART of the algoritm to compute squares. 

 

      while ((a[from] == 0) && (from < to)) 

      { 

        from++; 

        fromResult = fromResult + 2; 

      } 

      while ((a[to] == 0) && (from < to)) 

      { 

        to--; 

        toResult = toResult - 2; 

      } 

      if (to < from) 

        return; 

      if (from == to) 

      { 

        switch (a[to]) 

        { 

          case 0: 

            break; 

          case 1: 

            result[toResult] = 1; 

            break; 

          case 2: 
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            result[toResult] = 4; 

            break; 

          case 3: 

            result[toResult] = 9; 

            break; 

          case 4: 

            result[fromResult] = 1; 

            result[toResult] = 6; 

            break; 

          case 5: 

            result[fromResult] = 2; 

            result[toResult] = 5; 

            break; 

          case 6: 

            result[fromResult] = 3; 

            result[toResult] = 6; 

            break; 

          case 7: 

            result[fromResult] = 4; 

            result[toResult] = 9; 

            break; 

          case 8: 

            result[fromResult] = 6; 

            result[toResult] = 4; 

            break; 

          case 9: 

            result[fromResult] = 8; 

            result[toResult] = 1; 

            break; 

        } 

        //count++; 

        return; 

      } 

      //  This part is can be commented out if memoization has to be used. 

      /* 

      if (to - from == 5) 

      { 

        StringBuilder sq = new StringBuilder(); 

 

        for (int i = from; i <= to; i++) 

        { 

          sq.Append(a[i]); 

        } 

        byte[] square = null; 

        if (squares.TryGetValue(sq.ToString(), out square)) 

        { 

          for (int i = square.Length - 1; i >= 0; i--) 

          { 

            result[toResult] = square[i]; 

            toResult--; 

          } 

          return; 

        } 

      } 

      */ 

      int split = (int)Math.Ceiling((double)(from + to) / 2); 

      int toSplitPlus1 = to - split + 1; 

      if ((split - from) < toSplitPlus1) 
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      { 

        split = from + 1; 

        toSplitPlus1 = to - split + 1; 

      } 

      bool aIsOneDigit = split == from + 1; 

      int splitResult = toResult - 2 * toSplitPlus1 + 1; 

 

      int twoABIndex = toResult - toSplitPlus1; 

      int toA = split - 1; 

      int toResultA = splitResult - 1; 

      byte[] aMinB = null; 

 

      //new byte[to - split + 1]; 

      int aMinBFrom = 0; 

      int aMinBTo = 0; 

      bool aIsLarger = true; 

      if (!aIsOneDigit) 

      { 

        aMinB = ComputeDiff(a, split, to, from, toA, out aMinBFrom, out aMinBTo, ref  

            aIsLarger /* ref InputAMinB,*/ /* ref count */); 

        aIsLarger = !aIsLarger; 

        if (aMinB == null) 

        { 

          aMinB = ComputeDiff(a, from, toA, split, to, out aMinBFrom, out aMinBTo, ref  

              aIsLarger /* ref InputAMinB,*/ /* ref count */); 

        } 

      } 

      ComputeSquaresBinaryMethod(ref result, a, fromResult, toResultA, from, toA, /* ref  

        InputA,*/ ref count); 

 

 

      if (aMinBTo < aMinBFrom) 

      { 

        CopyResultAToBAnd2AB(ref result, fromResult, toResultA, toResult, twoABIndex, ref  

          count); 

        return; 

      } 

 

      if (!aIsOneDigit && (aMinBTo == aMinBFrom)) 

      { 

        ComputeResultAToBLinearly(ref result, a, fromResult, toResultA, toResult, from, toA,  

          aIsLarger, aMinB[aMinBTo], aMinB.Length - aMinBFrom - 1, ref count); 

      } 

      else 

      { 

        ComputeSquaresBinaryMethod(ref result, a, splitResult, toResult, split, to, ref  

          count); 

      } 

 

      if (aIsOneDigit) 

        Plus2AB(ref result, a, a[from], to, split, twoABIndex, ref count); 

      else 

      { 

        byte[] resultAMinB = new byte[2 * aMinB.Length]; 

        ComputeSquaresBinaryMethod(ref resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,  

          aMinB.Length - 1, ref count); 

        Merge(ref result, resultAMinB, fromResult, splitResult, toResult, twoABIndex, ref  

          count); 

      } 

    } 
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    static void CopyResultAToB(ref byte[] result, int fromResultA, int toResultA, int  

      toResultB, ref int count) 

    { 

      // count++; 

      int indexBForASq = toResultB; 

      for (int j = toResultA; j >= fromResultA; j--) 

      { 

        result[indexBForASq] = result[j]; 

        indexBForASq--; 

      } 

    } 

 

    static void CopyResultAToBAnd2AB(ref byte[] result, int fromResultA, int toResultA, int  

      toResultB, int twoABIndex, ref int count) 

    { 

      // count++; 

      int subAddB = 0; 

      int subAdd2AB = 0; 

      int remB = 0; 

      int rem2AB = 0; 

 

      while (true) 

      { 

        subAddB = result[toResultB] + result[toResultA] + remB; 

        subAdd2AB = result[twoABIndex] + result[toResultA] * 2 + rem2AB; 

        remB = 0; 

        rem2AB = 0; 

 

        if (subAddB > 9) 

        { 

          subAddB = subAddB - 10; 

          remB = 1; 

        } 

        if (subAdd2AB > 9) 

        { 

          if (subAdd2AB > 19) 

          { 

            subAdd2AB = subAdd2AB - 20; 

            rem2AB = 2; 

          } 

          else if (subAdd2AB > 9) 

          { 

            subAdd2AB = subAdd2AB - 10; 

            rem2AB = 1; 

          } 

        } 

        result[toResultB] = (byte)subAddB; 

        result[twoABIndex] = (byte)subAdd2AB; 

 

        if (fromResultA == toResultA) 

          break; 

        twoABIndex--; 

        toResultB--; 

        toResultA--; 

      } 

 

      while (rem2AB != 0) 

      { 

        twoABIndex--; 
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        subAdd2AB = result[twoABIndex] + rem2AB; 

        rem2AB = 0; 

        if (subAdd2AB > 9) 

        { 

          subAdd2AB = subAdd - 10; 

          rem2AB = 1; 

        } 

        result[twoABIndex] = (byte)subAdd2AB; 

      } 

      while (remB != 0) 

      { 

        toResultB--; 

        subAddB = result[toResultB] + remB; 

        remB = 0; 

        if (subAddB > 9) 

        { 

          subAddB = subAdd - 10; 

          remB = 1; 

        } 

        result[toResultB] = (byte)subAddB; 

      } 

    } 

 

    static void ComputeResultAToBLinearly(ref byte[] result, byte[] a, int fromResultA, int  

      toResultA, int toResultB, int fromA, int toA, bool aIsLarger, int k, int offset, ref  

      int count) 

    { 

      //count++; 

      int indexBForASq = toResultB - 2 * offset; 

      switch (k) 

      { 

        case 1: 

          result[indexBForASq] = 1; 

          break; 

        case 2: 

          result[indexBForASq] = 4; 

          break; 

        case 3: 

          result[indexBForASq] = 9; 

          break; 

        case 4: 

          result[indexBForASq - 1] = 1; 

          result[indexBForASq] = 6; 

          break; 

        case 5: 

          result[indexBForASq - 1] = 2; 

          result[indexBForASq] = 5; 

          break; 

        case 6: 

          result[indexBForASq - 1] = 3; 

          result[indexBForASq] = 6; 

          break; 

        case 7: 

          result[indexBForASq - 1] = 4; 

          result[indexBForASq] = 9; 

          break; 

        case 8: 

          result[indexBForASq - 1] = 6; 

          result[indexBForASq] = 4; 

          break; 
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        case 9: 

          result[indexBForASq - 1] = 8; 

          result[indexBForASq] = 1; 

          break; 

      } 

 

      int rem = 0; 

      int subAdd = 0; 

      indexBForASq = toResultB; 

      int startAt = toResultA; 

      if (fromResultA > toResultA) 

        fromResultA = fromResultA + 0; 

      while (true) 

      { 

        if ((result[indexBForASq] == 0) && (rem == 0)) 

        { 

          result[indexBForASq] = result[toResultA]; 

        } 

        else 

        { 

          subAdd = result[indexBForASq] + result[toResultA] + rem; 

          rem = 0; 

          if (subAdd > 19) 

          { 

            subAdd = subAdd - 20; 

            rem = 2; 

          } 

          else if (subAdd > 9) 

          { 

            subAdd = subAdd - 10; 

            rem = 1; 

          } 

          result[indexBForASq] = (byte)subAdd; 

        } 

        if (toResultA == fromResultA) 

          break; 

        toResultA--; 

        indexBForASq--; 

      } 

      while (rem != 0) 

      { 

        indexBForASq--; 

        subAdd = result[indexBForASq] + rem; 

        rem = 0; 

        if (subAdd > 9) 

        { 

          subAdd = subAdd - 10; 

          rem = 1; 

        } 

        result[indexBForASq] = (byte)subAdd; 

      } 

      //count++; 

      indexBForASq = toResultB - offset; 

      if (aIsLarger) 

      { 

        k = -k; 

        Minus2AB(ref result, a, k, toA, fromA, indexBForASq, ref count); 

      } 

      else 

      { 
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        Plus2AB(ref result, a, k, toA, fromA, indexBForASq, ref count); 

      } 

    } 

 

    static void Merge(ref byte[] result, byte[] resultC, int fromA, int fromB, int toB, int  

      fromResultIndex, ref int count) 

    { 

      int aIndex = fromB - 1; 

      int bIndex = toB; 

      int cIndex = resultC.Length - 1; 

      int subResultIndex = fromResultIndex - fromB; 

      int resultIndex = fromResultIndex; 

      int subAdd = 0; 

      int rem = 0; 

      int[] subResultB = new int[fromResultIndex - fromB + 1]; 

      bool useSubResultB = false; 

 

      for (int i = resultC.Length; i > 0; i--) 

      { 

        //count++; 

        if (!useSubResultB) 

        { 

          useSubResultB = bIndex == fromResultIndex; 

          if (useSubResultB) 

            bIndex = subResultB.Length - 1; 

        } 

        if (subResultIndex >= 0) 

          subResultB[subResultIndex] = result[resultIndex]; 

 

        if (aIndex < fromA) 

        { 

          if (useSubResultB) 

            subAdd = result[resultIndex] + subResultB[bIndex] - resultC[cIndex] + rem; 

          else 

            subAdd = result[resultIndex] + result[bIndex] - resultC[cIndex] + rem; 

        } 

        else 

        { 

          if (useSubResultB) 

            subAdd = result[resultIndex] + result[aIndex] + subResultB[bIndex] –  

              resultC[cIndex] + rem; 

          else 

            subAdd = result[resultIndex] + result[aIndex] + result[bIndex] - resultC[cIndex]   

              + rem; 

        } 

        rem = 0; 

        if (subAdd > 19) 

        { 

          rem = 2; 

          subAdd = subAdd - 20; 

        } 

        else if (subAdd > 9) 

        { 

          rem = 1; 

          subAdd = subAdd - 10; 

        } 

        else if (subAdd < 0) 

        { 

          rem = -1; 

          subAdd = subAdd + 10; 
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        } 

 

        result[resultIndex] = (byte)subAdd; 

        aIndex--; 

        bIndex--; 

        cIndex--; 

        resultIndex--; 

        subResultIndex--; 

      } 

      while (rem != 0) 

      { 

        //count++; 

        subAdd = result[resultIndex] + rem; 

        rem = 0; 

        if (rem > 10) 

        { 

          rem = 1; 

          subAdd = subAdd - 10; 

        } 

        if (rem < 0) 

        { 

          rem = -1; 

          subAdd = subAdd + 10; 

        } 

        result[resultIndex] = (byte)subAdd; 

        resultIndex--; 

      } 

    } 

 

    static byte[] ComputeDiff(byte[] a, int fromA, int toA, int fromB, int toB, out int  

      aMinBFrom, out int aMinBTo, ref bool aIsLarger /* ref int count */) 

    { 

      byte[] aMinB = new byte[(toA - fromA - (toB - fromB) > 0 ? toA - fromA + 1 : toB –  

        fromB + 1)]; 

      int indexAminB = aMinB.Length - 1; 

      int subMin = 0; 

      aMinBTo = aMinB.Length - 1; 

      aMinBFrom = 0; 

 

      aIsLarger = true; 

      int rem = 0; 

      while (true) 

      { 

        subMin = aMinB[indexAminB]; 

        bool useA = toA >= fromA; 

        bool useB = toB >= fromB; 

        if (useA && useB) 

        { 

          subMin = subMin + a[toA] - a[toB] + rem; 

        } 

        else if (useA) 

        { 

          subMin = subMin + a[toA] + rem; 

        } 

        else if (useB) 

        { 

          subMin = subMin - a[toB] + rem; 

        } 

        rem = 0; 

        if ((subMin < 0) && (indexAminB >= 0)) 
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        { 

          subMin = subMin + 10; 

          rem = -1; 

        } 

 

        aMinB[indexAminB] = (byte)subMin; 

 

        if (indexAminB == 0) 

        { 

          if (rem != 0) 

            aMinB = null; 

          break; 

        } 

        toA--; 

        toB--; 

        indexAminB--; 

      } 

      if (aMinB == null) 

        return aMinB; 

      while ((aMinB[aMinBFrom] == 0) && (aMinBFrom < aMinBTo)) 

      { 

        aMinBFrom++; 

        //count++; 

      } 

      while ((aMinB[aMinBTo] == 0) && (aMinBFrom < aMinBTo)) 

      { 

        aMinBTo--; 

        //count++; 

      } 

      if ((aMinBFrom == aMinBTo) && (aMinB[aMinBFrom] == 0)) 

      { 

        aMinBTo = -1; 

      } 

      return aMinB; 

    } 

 

    static void Plus2AB(ref byte[] result, byte[] a, int valueA, int toB, int fromB, int  

      fromResultIndex, ref int count) 

    { 

      int resultIndex = fromResultIndex; 

      int remainder = 0; 

      int indexB = toB; 

      int subMultiply = 0; 

      if (valueA == 0) 

        return; 

      valueA = 2 * valueA; 

      //if (fromA == split - 1) 

      { 

        while (true) 

        { 

          // count++; 

          if (indexB >= fromB) 

          { 

            subMultiply = valueA * a[indexB] + remainder + result[resultIndex]; 

          } 

          else 

            subMultiply = remainder + result[resultIndex]; 

 

          remainder = 0; 

          if (subMultiply < 100) 
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          { 

            if (subMultiply < 10) 

            { 

              //result[resultIndex] = subMultiply; 

              remainder = 0; 

            } 

            else if (subMultiply < 20) 

            { 

              subMultiply = subMultiply - 10; 

              remainder = 1; 

            } 

            else if (subMultiply < 30) 

            { 

              subMultiply = subMultiply - 20; 

              remainder = 2; 

            } 

            else if (subMultiply < 40) 

            { 

              subMultiply = subMultiply - 30; 

              remainder = 3; 

            } 

            else if (subMultiply < 50) 

            { 

              subMultiply = subMultiply - 40; 

              remainder = 4; 

            } 

            else if (subMultiply < 60) 

            { 

              subMultiply = subMultiply - 50; 

              remainder = 5; 

            } 

            else if (subMultiply < 70) 

            { 

              subMultiply = subMultiply - 60; 

              remainder = 6; 

            } 

            else if (subMultiply < 80) 

            { 

              subMultiply = subMultiply - 70; 

              remainder = 7; 

            } 

            else if (subMultiply < 90) 

            { 

              subMultiply = subMultiply - 80; 

              remainder = 8; 

            } 

            else if (subMultiply < 100) 

            { 

              subMultiply = subMultiply - 90; 

              remainder = 9; 

            } 

          } 

          else if (subMultiply < 110) 

          { 

            subMultiply = subMultiply - 100; 

            remainder = 10; 

          } 

          else if (subMultiply < 120) 

          { 

            subMultiply = subMultiply - 110; 
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            remainder = 11; 

          } 

          else if (subMultiply < 130) 

          { 

            subMultiply = subMultiply - 120; 

            remainder = 12; 

          } 

          else if (subMultiply < 140) 

          { 

            subMultiply = subMultiply - 130; 

            remainder = 13; 

          } 

          else if (subMultiply < 150) 

          { 

            subMultiply = subMultiply - 140; 

            remainder = 14; 

          } 

          else if (subMultiply < 160) 

          { 

            subMultiply = subMultiply - 150; 

            remainder = 15; 

          } 

          else if (subMultiply < 170) 

          { 

            subMultiply = subMultiply - 160; 

            remainder = 16; 

          } 

          else if (subMultiply < 180) 

          { 

            subMultiply = subMultiply - 170; 

            remainder = 17; 

          } 

          else if (subMultiply < 190) 

          { 

            subMultiply = subMultiply - 180; 

            remainder = 18; 

          } 

          else 

          { 

            subMultiply = subMultiply - 190; 

            remainder = 19; 

          } 

          result[resultIndex] = (byte)subMultiply; 

          indexB--; 

          resultIndex--; 

          if ((indexB < fromB) && (remainder == 0)) 

            break; 

        } 

      } 

    } 

 

    static void Minus2AB(ref byte[] result, byte[] a, int valueA, int toB, int fromB, int  

      fromResultIndex, ref int count) 

    { 

      int resultIndex = fromResultIndex; 

      int remainder = 0; 

      int indexB = toB; 

      int subMultiply = 0; 

      valueA = 2 * valueA; 
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      while (true) 

      { 

        // count++; 

        if (indexB >= fromB) 

        { 

          subMultiply = valueA * a[indexB] + remainder + result[resultIndex]; 

        } 

        else 

          subMultiply = remainder + result[resultIndex]; 

 

        remainder = 0; 

        if (subMultiply >= -10) 

        { 

          subMultiply = subMultiply + 10; 

          remainder = -1; 

        } 

        else if (subMultiply >= -20) 

        { 

          subMultiply = subMultiply + 20; 

          remainder = -2; 

        } 

        else if (subMultiply >= -30) 

        { 

          subMultiply = subMultiply + 30; 

          remainder = -3; 

        } 

        else if (subMultiply >= -40) 

        { 

          subMultiply = subMultiply + 40; 

          remainder = -4; 

        } 

        else if (subMultiply >= -50) 

        { 

          subMultiply = subMultiply + 50; 

          remainder = -5; 

        } 

        else if (subMultiply >= -60) 

        { 

          subMultiply = subMultiply + 60; 

          remainder = -6; 

        } 

        else if (subMultiply >= -70) 

        { 

          subMultiply = subMultiply + 70; 

          remainder = -7; 

        } 

        else if (subMultiply >= -80) 

        { 

          subMultiply = subMultiply + 80; 

          remainder = -8; 

        } 

        else if (subMultiply >= -90) 

        { 

          subMultiply = subMultiply + 90; 

          remainder = -9; 

        } 

        else if (subMultiply >= -100) 

        { 

          subMultiply = subMultiply + 100; 

          remainder = -10; 



41 
 

        } 

        else if (subMultiply >= -110) 

        { 

          subMultiply = subMultiply + 110; 

          remainder = -11; 

        } 

        else if (subMultiply >= -120) 

        { 

          subMultiply = subMultiply + 120; 

          remainder = -12; 

        } 

        else if (subMultiply >= -130) 

        { 

          subMultiply = subMultiply + 130; 

          remainder = -13; 

        } 

        else if (subMultiply >= -140) 

        { 

          subMultiply = subMultiply + 140; 

          remainder = -14; 

        } 

        else if (subMultiply >= -150) 

        { 

          subMultiply = subMultiply + 150; 

          remainder = -15; 

        } 

        else if (subMultiply >= -160) 

        { 

          subMultiply = subMultiply + 160; 

          remainder = -16; 

        } 

        else if (subMultiply >= -170) 

        { 

          subMultiply = subMultiply + 170; 

          remainder = -17; 

        } 

        else if (subMultiply >= -180) 

        { 

          subMultiply = subMultiply + 180; 

          remainder = -18; 

        } 

        else if (subMultiply >= -190) 

        { 

          subMultiply = subMultiply + 190; 

          remainder = -19; 

        } 

 

        result[resultIndex] = (byte)subMultiply; 

        indexB--; 

        resultIndex--; 

        if ((indexB < fromB) && (remainder == 0)) 

          break; 

      } 

    } 

 

 

    static byte[] ComputeProduct(StringBuilder InputA, StringBuilder InputB) 

    { 

      if (InputA.Length > InputB.Length) 

      { 
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        StringBuilder inputC = InputA; 

        InputA = InputB; 

        InputB = inputC; 

      } 

 

      int inputPositionA = 0; 

      byte[] numberA = new byte[InputA.Length]; 

      inputPositionA++; 

      for (inputPositionA = 0; inputPositionA < InputA.Length; inputPositionA++) 

      { 

        numberA[inputPositionA] = Convert.ToByte(InputA.ToString(inputPositionA, 1)); 

      } 

 

      int inputPositionB = 0; 

      byte[] numberB = new byte[InputB.Length]; 

      inputPositionB++; 

      for (inputPositionB = 0; inputPositionB < InputB.Length; inputPositionB++) 

      { 

        numberB[inputPositionB] = Convert.ToByte(InputB.ToString(inputPositionB, 1)); 

      } 

 

      DateTime startTime = DateTime.Now; 

      //Console.WriteLine(startTime); 

      int count = 0; 

      byte[] a = Integer_BinarySquare(numberA, ref InputA, ref count); 

      byte[] b = Integer_BinarySquare(numberB, ref InputB, ref count); 

 

      byte[] aMinB = new byte[(InputA.Length > InputB.Length ? InputA.Length :  

        InputB.Length)]; 

      byte[] result = new byte[InputA.Length + InputB.Length]; 

      bool enterA = true; 

      int indexA = 0; 

      int indexB = 0; 

      for (int i = 0; i < result.Length; i++) 

      { 

        if (enterA) 

        { 

          result[i] = numberA[indexA]; 

          indexA++; 

          enterA = indexA < numberA.Length; 

        } 

        else 

        { 

          result[i] = numberB[indexB]; 

          indexB++; 

        } 

      } 

      int aMinBFrom = 0; 

      int diffFromA = 0; 

      int diffToA = numberA.Length - 1; 

      int diffFromB = numberA.Length; 

      int diffToB = result.Length - 1; 

      int aMinBTo = 0; 

      bool aIsLarger = true; 

      StringBuilder InputC = new StringBuilder(); 

      ComputeDiff(result, diffFromA, diffToA, diffFromB, diffToB, out aMinBFrom, out  

        aMinBTo, ref aIsLarger /* ref InputC,*/ /* ref count */); 

      byte[] c = Integer_BinarySquare(aMinB, ref InputC, ref count); 

 

      indexA = a.Length - 1; 
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      indexB = b.Length - 1; 

      int indexC = c.Length - 1; 

      int rem = 0; 

      for (int i = result.Length - 1; i >= 0; i--) 

      { 

        //count++; 

        int subResult = rem; 

        rem = 0; 

        if (indexA >= 0) 

          subResult = subResult + a[indexA]; 

        if (indexB >= 0) 

          subResult = subResult + b[indexB]; 

        if (indexC >= 0) 

          subResult = subResult - c[indexC]; 

        if (subResult > 9) 

        { 

          subResult = subResult - 10; 

          rem = 1; 

        } 

        if (subResult < 0) 

        { 

          subResult = subResult + 10; 

          rem = -1; 

        } 

        result[i] = (byte)subResult; 

        indexA--; 

        indexB--; 

        indexC--; 

      } 

 

      // Divide by two 

      rem = 0; 

      int subDivide = 0; 

      for (int i = 0; i < result.Length; i++) 

      { 

        //count++; 

        subDivide = rem + result[i]; 

        rem = 0; 

        switch (subDivide) 

        { 

          case 1: 

            subDivide = 0; 

            rem = 10; 

            break; 

          case 2: 

            subDivide = 1; 

            break; 

          case 3: 

            rem = 10; 

            subDivide = 1; 

            break; 

          case 4: 

            subDivide = 2; 

            break; 

          case 5: 

            rem = 10; 

            subDivide = 2; 

            break; 

          case 6: 

            subDivide = 3; 
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            break; 

          case 7: 

            rem = 10; 

            subDivide = 3; 

            break; 

          case 8: 

            subDivide = 4; 

            break; 

          case 9: 

            rem = 10; 

            subDivide = 4; 

            break; 

          case 10: 

            subDivide = 5; 

            break; 

          case 11: 

            rem = 10; 

            subDivide = 5; 

            break; 

          case 12: 

            subDivide = 6; 

            break; 

          case 13: 

            rem = 10; 

            subDivide = 6; 

            break; 

          case 14: 

            subDivide = 7; 

            break; 

          case 15: 

            rem = 10; 

            subDivide = 7; 

            break; 

          case 16: 

            subDivide = 8; 

            break; 

          case 17: 

            rem = 10; 

            subDivide = 8; 

            break; 

          case 18: 

            subDivide = 9; 

            break; 

          case 19: 

            rem = 10; 

            subDivide = 9; 

            break; 

        } 

        result[i] = (byte)subDivide; 

      } 

      return result; 

    } 

  } 

} 
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Chapter 11 Deliverable 1 

Question 1 
Give an O(n(m + r) time algorithm for the SR-problem for S, R, and T. Your 

algorithm should solve the problem in O(n(m + r) time. 

Solution 
Let V be the result string obtained from searching string T for pattern S and 

replacing occurrences with string R. The length of T, S and R being n, m, and r. 

 

The algorithm can described as: 

 

      i, j = 0                 // (1) 

      while (i < n) do         // (2) 

        if (i < n - m)         // (3) 

          j = 0                // (4) 

          while (j < m) and (i + j < n) and (S[j] = T[i + j]) do  // (5) 

            if (j == m - 1)    // (6) Match found of S in T. 

              V = V + R        // (7) Result string V updated with R. 

              i = i + m - 1    // (8) Search in T shift m places.  

            else               // (9) 

              j = j + 1        // (10) 

        if (j < m - 1)         // (11)S not found in T 

          V = V + T[i]         // (12)Character in T append to V when S notmatched 

        i = i + 1              // (13)Shift outer loop. 

 

1. The outerloop (line 2) can shift up to a maximum n-times, that is, if there 
is no match of S in T (line 6 is never satisfied) 

2. The next inner loop (line 5) can shift up to a maximum m-times, that is if 
string S is matches in T (line 6 is satisfied) 

3. The replacing part (line 7) shifts upto a maximum r-times to append string R 
into V. 

 

Hence this algorithm takes O(n(m + r)). The algoritm never reaches this bound 

however because statement (1) and (2) rely on the opposite condtion (6) to 

occur. 

 

Question 2 
Find the best-case and worst-case running time of your algorithm and discuss which 

properties of the input may result in the best-case and worst-case performance, 

respectively. 

Solution 
As can be observed from the algorithm above, the best-case running-time of the 
algoritm is when it avoids going into branch (5), that is for character of string S 

does not occur in the string T in the first n – m places.  

 

This would result in a best-case performance of O(n). 

 

The worst-case running time would be encountered when condition (5) is satified. 
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The two worst-case scenario can be derived depending on the size of m and r: 

1. r is small: Then it is better to allow condition (5) to always be met be 
never condition(6). The worst-case therefore arise when m = n / 2 and T 

contains matches upto the m – 1 character.  

      This would give rise to: 

             

 

2. r is very large: Then it is better to always allow condition (5) and (6) to 
always be satified. The worst-case would therefore arise when m = 1 and T 

contains only character found in S. 

 

             

 

Question 3 
Suppose that you only want to search and replace complete words in the document. How does this affect the problem? Design an 

algorithm for this variant. 

The following algorithm searches and replaces words only. The testWord flag is introduced to indicate when a word has begun so that a 

test should spring into action. Otherwise string V just copies the characters in linear time. 

Solution 
    i, j = 0,                 // (1) 

    testWord = true           // (2) 

    while (i < n) do          // (3) 

      if (i < n - m)          // (4) 

        j = 0                 // (5)           

        while (j < m) and (i + j < n) and (S[j] = T[i + j]) and testWord do //(6) 

          if (j == m - 1) and (T[i + 1] = ‘ ‘) // (7)Match found of word in S in T. 

            V = V + R         // (8) Result string V updated with R. 

            i = i + m - 1     // (9) Search in T shift m places.  

          else                // (10) 

            testWord = false  // (11) 

            j = j + 1         // (12) 

      if (j < m - 1)              // (13)S not found in T 

        V = V + T[i]          // (14)Character in T append to V when S notmatched 

        testWord = T[i + 1] = ‘ ‘;// (15) or any other line terminating chars.    

      i = i + 1               // (16)Shift outer loop. 

 

 

 

1. The outerloop (line 2) remains unaffected 
2. The next inner loop (line 6) is modified is check whether the word needs 

testing and can shift up to a maximum m-times, that is if string S is matches 

in T (line 6 is satisfied) 

3. The replacing part (line 7) shifts upto a maximum r-times to append string R 
into V. 

 

Question 4 
The overlap of two strings A and B, denoted overlap(A,B) is the longest suffix of A 

that is a prefix of B. For instance, Overlap(ababa, ababc) = aba. Suppose that you 
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are given a data structure for S that for any  and  supports the following 

query in constant time: 

 

 

Use this data structure to design a faster algorithm for the SR-problem. 

Solution 
 

The algorithm can described as: 

 

      i, j = 0                 // (1) 

      while (i < n) do         // (2) 

        if (i < n - m)         // (3) 

          while (j < m) and (i + j < n) and (S[j] = T[i + j]) do  // (4) 

            if (j == m - 1)    // (5) Match found of S in T. 

              V = V + R        // (6) Result string V updated with R. 

            else               // (7) 

              j = j + 1        // (8) 

        if (j > 0)                       // (9) 

          ovl = overlapLength(S[1..j], S) // (10) 

          if (j < m - 1)                 // (11) 

            V = V + T[i..i + j – ovl]// apppend in V the chars to be skipped by i  

          i = i + j – ovl - 1   // shift i (13) 

        else                   // (14) 

          V = V + T[i]         // (15)Character in T append to V when S notmatched 

        i = i + 1              // (16)Shift outer loop. 

 

The above algoritm is very much similar to the one solved in Question 1. The key 

distinction in the impact of the OverlapLength function. In step 9 to 13, i, the 

outer loop can be shifted at least once. At the same time testing in S need not 

resume at the first character. This leads to a dramatic reduction of loops, such 

the algoritm becomes linear polnomial.It therefore reduces to a O(n + r). 

 

Question 5 
Show how to build a data structure in  time supporting OverlapLength queries 

for S in constant time. 

Solution 
You can construct such a data structure using an array of size m integers. 

Question 6 
Combine the data structure from exercise 5 and the algorithm from exercise 4 to 

give a new algorithm for the S-R problem. Compare the new algoritm with the one 

from exercise 1. 

Solution 
The OverlapLengh array can be constructed once. This can be done right at the 

beginning of the algorithm of exercise 4. 

The combined time will then be  
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This is must faster compared to the  runnning time seen in exercise 1. 
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Chapter 12 Deliverable 2 

Question 1 
The solution is to use an algorithm that avoid comparing the ”don’t care” characters such that, it shift the matching to the next ”non-

don’t care character”. 

To be able to do so, the algorithm would have to perform the following: 

1. Construct a data structure S’ such that S’ contains the shift needed at point S*i+ 

 

shift   0 

position  0 

for (i  1; i++; i < m) 

  if s[i] = DontCareChar  then 

    s’*pos+  s’*position] + 1 

  else 

    s’*i+ = 0 

    position = i 

Example:  

 Suppose   then the  

2. Implement a naïve search replace but with the following optimization whenever it achieve a partial match it then proceed to 

perform the next match based on the shift suggested by the data structure s’ that was generated. 

Example: 

Suppose we have  and . 

Therefore  

When shift = 0, 

T 1 1 1 1 1 3 4 

S 1    3 4  

S’ 3 0 0 0 0 0  

 

The first character is matched (green),  then s’ causes the next character to attempt matching to be shift by three 

(orange region is skipped), where it fails (red) 

 

When shift = 1, 

T 1 1 1 1 1 3 4 

S  1    3 4 

S’  3 0 0 0 0 0 

Because of the mismatch the algorithms moves on with next shift. 

The first character is matched (green),  then s’ causes the next character to attempt matching to be shifted by three 

(orange region is skipped). It consequently matches the remaining part successfully and replaces it. 

Time-complexity 
The first part for creating the data structure s’ would cost linear time in:  as it scans each character in S once. 
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The second part of the algorithm would cost –  where k is the number of DontCareCharacters. Hence for each shift , there 

would be m – k attempt to match. 

Replacing would cost , where occ is the number of occurrence of S in T. 

Hence the total time complexity would be –  

Space complexity 
The solution would require additional space to store s’:  

Question 2 
To be able to find subsequence occurrences of S in T, the algorithm would have to scan left to right on T once.  For each character in T it 

would have to compare the the jth character in S that has not yet been matched.  Initially j is the index to the first character in S. 

Whenver a match is encountered,  the index of T is recorded and j is shift by one. When the full length of S has been matched, the result 

of the indexes of T that were matched are then printed and j is reset to the index of the first character again. The next subsequence is 

then matched. 

j  0 

for (i  0; i++; i < n) 

    if s[j] = T[i] 

      result  i + ‘;’   

      if j  = m – 1  

        print “subsequence found = ” + result 

        j  0 

     else 

        j  j + 1         

Time-complexity 
The algorithm above simply goes through each character in T once with cost  

 If the algorithm had to find each subsequence.  

Example ,  

Given , and . 

The subsequences would then be every combination i.e. [0,1], [0,2], [0,3], [1,2], [1,3], [2,3] 

This give rise to a complexity of  

Question 3 
An algorithm which included variable length don’t care character could be solved as follows: 

To be able to do so, the algorithm would have to perform the following: 

1. Construct an data structure to store the OverlapLength discussed in deliverable 1 for each substring that occur before 

a variable length.  Let us denote the substring as sj, where j = 1,2,…,k., the k substring contained in S 

Example:  
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ab * c * aa would result in substrings [ab, c, aa], k = 3 and such each would have its OverlapLength data structure 

created.  

2. Use algorithm discussed in Deliverable 1 that uses the OverlapLength, but with the following optimization,  whenever 

substring sj is fully matched, proceed matching substring sj+1 using OverlapLengthj+1. . 

Time-complexity 
The algorithm would cost the following:  

Time to construct the OverlapLength for each substring  +  

Question 4 
Given two string of equal length n, and a query the computes the LCP of  two strings in constant time, an algorithms to compute the 

Hamming Distance (i..e number of mismatch between the two strings could be performed as follows) 

1. Compute the LCP between the two strings T and S. 

2. If the LCP is zero then no matches were found return length of T, denoting no match. 

3. If the LCP is nonzero = j, then it must mean that j + 1 character did not match, hence proceed to Step 1 again using T[j+1...n] 

and S[j+1..n]. Also note that 1 character was a mismatch. 

The algoritm below would therefore compute the HammingDistance. 

HammingDistance (T, S) 

    j  LCP(T, S) 

    if j = 0 return length(T) 

    return HammingDistance(T[j + 1..n], S[j+1..n]) + 1 

Time-complexity 
Step 1  in the algoritm would always cost constant time. 

Step 2  would cost time to compute the length of the substring T. This can only occur once during the entire computation. Worst case 

would be  

Step 3 would cost constant time * match worst-case for this would O(n/2) assuming every second character is a mismatch. 

Hence the time complexity is upper-bound by  

  

 

 

 

 

 

 

Chapter 13 Deliverable 3 

Question 1 
Design a dynamic programming algorithm to compute the edit distance between S and 

T. 
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Solution 
The following algorithm converts a string S into a string T using the following 

operations (Delete, Insert, Replace, and Match).  To do so, an (m + 1) × (n + 1) 

array is constructed and initialized with values 0..n horizontally and 0..m 

vertically (see first row and first column below). The horizontal initialization 

represents the deletion operation required to convert VINTNER string to an empty 

string. 

 To String 

  - 

From 
String 

- 0 

W 1 

R 2 

I 3 

T 4 

E 5 

R 6 

S 7 

 

The vertical initialization represents the insertion operation required to convert 

the string WRITERS into an empty string. 

   ToString 

  - V I N T N E R  

FromString - 0 1 2 3 4 5 6 7 

 

To fill the remaining m×n cells the immediate top, diagonal, and left cells must be 

computed. The value filled is the based on cheapest operation possible. Choosing 

the top value would represent a Deletion, the Left an Insertion, and the Diagonal 

would either represent a Match (if the character incident to the cell are the 

same), or it would represent a Replace operation. The cost for each operation is 1 

except for the Match which is 0. 

The eventual table is shown below. The cell A[m,n] represents the optimal cost of 

converting the entire From String to the ToString which is the value we seek to 

find. 

 
 
 
 
 
 
 
 

   To String 

  - V I N T N E R Delete 
Direction From 

String 
- 0 1 2 3 4 5 6 7 

W 1 1 2 3 4 5 6 7 

R 2 2 2 3 4 5 6 6 
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I 3 3 2 3 4 5 6 7 

T 4 4 3 3 3 4 5 6 

E 5 5 4 4 4 4 4 5 

R 6 6 5 5 5 5 5 4 

S 7 7 6 6 6 6 6 5 

 Insert Direction Match/Replace 
Direction 

 

 

Edit-Distance(X,Y) 

  Array[0..m,0..n] 

  Initialize A[i,0] = i for each i 

  Initialize A[0,j] = j for each j 

  for j = 1,...,n 

    for i = 1,...,m 

      A[i,j] = min(A[i-1,j] + 1, A[i,j-1] + 1, A[i-1,j-1] + Compare(X[i],Y[j])) 

  return A[m,n] 

 

where  

Min(a,b,c) = a if a > b and a > c 

             b if b > c 

             c otherwise 

 

Compare[a,b] = 0 if a = b 

               1 if a <> b 

 

 

Correctness 

Correctness proof is similar to the one in Algorithm Design Chapter 6 (Sequence 

Alignment) Kleinberg/Tardos 

 

Space Complexity 

The algorithm needs to compute (m + 1) * (n + 1) entries hence the space 

requirement is O(mn). The entry of interest is the A[m,n] hence the algorithm can 

do without having to store all the values. When entering the jth row, the values 

required are the j-1th row and the current row. 

 

Below is a visual illustration of the cell value required to be kept a various 

states of the algorithm. The shaded parts are parts that need to be kept. 

 

         

  Computing 

this cell 

      

 

         

   Computing 

this cell 

     

 

Hence the amount of space can actually be optimised to m + 1 = O(m) 

 

 

Time Complexity 

Initialization of the array would cost O(m + n) 
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The two nested loops would cost O(mn) 

The functions Min(a,b) and Compare(a,b) cost constant time. 

 

Hence the total cost would be O(m + n) + O(mn) = O(mn) 

Question 2 
Suppose that the edit distance between S and T is at most a small number k < n,m 

that is given as part of input. Use this to improve your algorithm from the 

previous exercise such that the running time depends on k. 

 

Solution  
Continuing from  the discussion, from question 1, the table of value represent the 

optimal cost of from converting an empty string to an empty string see cell (0,0) 

to convert string WRITERS to VINTNER  see cell (7,7). Traversing from one end of 

the diagonal to the other diagonal is the cheapest path. But when the strings are 

not the same this is not the case. Deviating from the diagonal costs an INSERT or 

DELETE operation.  

 

If it is known that there a no more than k operations, then there cannot exist more 

than k consecutive DELETE or INSERT operations from the diagonal at any given row. 

This observation allows us to discard computing cells that are more than a distance 

k from the diagonal. 

  

The algorithm below implements that observation. 

 

Edit-Distance(X,Y,k) 

  Array[0..m,0..n] 

  Initialize A[i,0] = i for each i to k 

  Initialize A[0,j] = j for each j to k 

 

  diagPosition = 0 

  width = 2 * k 

  nextRowStartIndex = 1   

  for j = 1,...,n 

    diagPosition = diagPosition + 1 

    fromIndex = diagPosition – width 

    if fromIndex < 0 

      fromIndex = 1 

    toIndex = diagPosition + width 

    if toIndex > m 

      fromIndex = m 

    for i = fromIndex,...,toIndex 

      topValue = A[i-1,j] 

      topDiagValue = A[i-1,j-1] 

      leftValue = A[i,j-1] 

 

      if (topValue == 0) 

        topValue = topDiagValue + 10 

      if (leftValue == 0) 

        leftValue = topDiagValue + 10 

      

      A[i,j] = min(topValue + 1, leftValue + 1, topDiagValue + Compare(X[i],Y[j])) 
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  return A[m,n] 

 

where  

Min(a,b,c) = a if a > b and a > c 

             b if b > c 

             c otherwise 

 

Compare[a,b] = 0 if a = b 

               1 if a <> b 

 

Time Complexity 

We therefore need to compute the initialization k postions verital and horizontal 

O(k + k) = O(2k) = O(k) 
 

In the main algorithm we need to computes 2k + 1 (k distance on each side of the 

diagonal plus the diagonal itself for m rows. O(2km + 2m) = O(km+ m) 

 

Hence the time complexity = O(k) + O(km + m) = O(k + km + m) 

Question 3 
Suppose that the edit distance between S and T is at most a small number k, but we 

do not know what k is. Design an algorithm for this problem. The running time 

should also depend on k. 

Solution 
 

If we k is unknown the following can be done. We first assume k = 0, and compute 

Edit_Distance. If the value of cell A[m,n] = 0 then we stop otherwise we continue 

incrementing k until A[m,n] <= k. The algorithm below implements this strategy. 

 

Edit_Distance_2(S, T, tryK = 0) 

{ 

   

  result = EditDistance(S, T, tryK) 

  if result > tryK 

    Edit_Distance_2(S, T, tryK = 0) 

  return result      

} 

 

Time Complexity: 

Time complexity would vary depending on how k is actually is. But with k small, the 

repetitions would be more efficient that computing the entire table. 

 

 

Question 4 
How quickly can you compute the edit distance between S and T if you have n 

processors which can read and write in the table simultaneously? Give a fast 

algorithm for this problem. 

Solution 
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Each processor can be attached to a row. Such that once the row above has computed 

it cells value, the row just below can also compute its cell value. This will 

result into parallel computation. Hence there would be n + 1 processor. Processor 1 

for the 0th row, processor 2 for the 1st row,…, processor n + 1 for the n+1th row. 

 

The time complexity will therefore be O(m + 1) = O(m), assuming initialization also 

the responsibility of the respective processor.  

Question 5 
The local edit distance problem is to find a substring S[i..j] of S that minimizes 

the edit distance between any substring of S and T. Give an O(nm) time algorithm 

for this problem. Hint the modify the initial conditions for the dynamic program 

from exercise 1. 

Solution 
You can construct such a data structure using an array of size m integers. 

Question 6 
Given an error threshold k the search and replace problem with errors (SRE-problem) 

is defined as the SR problem except that S matches at position i in T if i is the 

endpoint of a substring of T whose edit distance to S is at most k. Note that there 

might be more than one substring of T ending at position I and therefore we require 

that the shortest of these substrings are replaced. 

Solution 
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