

ITU University, Copenhagen

Karatsuba Algorithm
using Sums of
Differences
Advanced Algorithms: Supervisor: Philip Bille

Elly Nkya
12/19/2007

2

Contents

Chapter 1 Goal of the project ... 4

Chapter 2 Karatsuba Multiplication Algorithm ... 4

Chapter 3 Square of a Difference ... 5

Chapter 4 Square of a Sum ... 5

Chapter 5 Computing the product of two numbers using the Square of a Difference ... 6

Chapter 6 Computing the Square of a Number using the Square of a Difference and Square of a Sum .. 7

Chapter 7 Space Complexity Optimization ... 11

Chapter 8 Time Complexity Optimization... 12

Optimizing on the number of primitive operations required ... 12

Optimizing using .. 14

Optimizing using ... 18

Optimizing using Memoization ... 21

Combined Effect ... 24

Chapter 9 Conclusion .. 27

Chapter 10 Appendix .. 28

Chapter 11 Deliverable 1 .. 45

Question 1 .. 45

Solution .. 45

Question 2 .. 45

Solution .. 45

Question 3 .. 46

Solution ... 46

Question 4 .. 46

Solution ... 47

Question 5 .. 47

Solution ... 47

Question 6 .. 47

Solution ... 47

Chapter 12 Deliverable 2 .. 49

Question 1 .. 49

Time-complexity ... 49

Space complexity .. 50

Question 2 .. 50

Time-complexity ... 50

3

Question 3 .. 50

Time-complexity ... 51

Question 4 .. 51

Time-complexity ... 51

Chapter 13 Deliverable 3 .. 51

Question 1 .. 51

Solution .. 52

Question 2 .. 54

Solution .. 54

Question 3 .. 55

Solution ... 55

Question 4 .. 55

Solution ... 55

Question 5 .. 56

Solution ... 56

Question 6 .. 56

Solution ... 56

Chapter 15 Bibliography ... 57

Chapter 16 Table of Equation and Algorithms .. 57

4

Chapter 1 Goal of the project
Mathematical operations are central part of many algorithms. In order to achieve faster computational speeds, these operations need

to be efficient. Integer multiplication is one of those operations. Classrooms everywhere teach the classic method of multiplying each

digit on one number with a digit of the other resulting in a complexity of .

Karatsuba introduced a method that required . His method used Divide & Conquer.

In this project, a similar algorithm is introduced. The algorithm uses the intuition of using Divide and Conquer as in the Karatsuba, but

this time, squares of differences are utilized instead. Various optimizations are then discussed and implemented to improve its

computational efficiency. The end effect is a faster algorithm which improves in the constant k on

Chapter 2 Karatsuba Multiplication Algorithm
Before we go into discussion of this other method we will briefly describe the essence of the Karatsuba.

Given two digit numbers each of size , we can rewrite them using a integer (choosing) such that

Hence multiplying the two together and expanding,

So in order to solve requires computing four sub-products (i.e.) , two shift operations (i.e. ,and

two additions.

To compute the sub products (i.e.) the same method is applied again to each one of the terms. Splitting a

problem and recombining it again to solve it is known as Divide and Conquer. The method of solve sub problems using the same

method as the original problem is known as recursion.

In its current form, the worst case running time , where here is the number of digits, can be expressed as

When n = 2,

) represents the recursive splitting of the problem into four smaller sub problems each of size , and represents the additions,

required for merging once the four sub problems have been computed. The second formula, , represents case when only two

numbers remain. At this point a simple multiplication is performed without need of recursion.

It can be shown that . So all this resulted in the same complexity as the “classroom” multiplication.

However, Karatsuba further observed that, (the middle terms) could be re-written as follows

5

Hence the product could be fully expressed as follows

Equation 2-1

So now solving consists of computing three instead of four sub products (i.e.), two shift

operations, four additions and two subtractions. Additions, subtraction are linear operations. Shifting is constant time.

In this new form, the worst case running time , where here is the number of digits, can be expressed as

When n = 2,

It can be shown that . In this form, the method became asymptotically better than

the “classroom” multiplication. It is also worth mentioning that this method only is better when two number of equally large size are

being computed.

Below we will introduce two known mathematical relations which will be central to our discussions.

Chapter 3 Square of a Difference

Equation 3-1

Chapter 4 Square of a Sum

Equation 4-1

6

Chapter 5 Computing the product of two numbers using the Square of a

Difference
We can rewrite the square of a difference equation by rearranging as follows.

Equation 5-1

This form now allows us to compute the product of two numbers by computing:

 SQUARES: 3 squaring operations on integers of size up to n ,

 ADDITIONS: 1 addition operation on an integer of size up to 2n,

 SUBTRACTIONS: 2 subtractions one being in on integer of size up to n and the other up to 2n, finally,

 DIVISION: 1 division by two on an integer of size up to n

In this form, the worst case running time , where here is the number of digits, can be expressed as

When ,

) represents the recursive splitting of the problem into three smaller sub problems each of size , and represents the

additions, subtraction, and division described above. The second formula, , the represents case when only two numbers

remain. At this point a simple square is performed without need of recursion.

It can be shown that . Hence the worst case running time equals that of the Karatsuba

method described earlier.

The following algorithm describes the process.

The complexity of the multiplication of is now reduced to complexity of computing the square of a number.
We will now discuss the computing the square of a number using the square of a difference.

ComputeProduct(a, b)

 aMinb ← a - b

 aSquared ← ComputeSquare(a)

 bSquared ← ComputeSquare(b)

 aMinbSquared ← ComputeSquare(aMinb)

 productAB ← DivideByTwo(aSquared + bSquared – aMinBSquared)

 return productAB

Algorithm 5-1

7

Chapter 6 Computing the Square of a Number using the Square of a Difference

and Square of a Sum
Given a number each of size , we can rewrite it using by choosing integer , preferably choosing . Hence

Hence the can be expressed as,

Expanding using the sum of squares gives,

Equation 6-1

Rearranging the sum of differences relation can be expressed as,

We can substitute the term in the equation (1) to get

Equation 6-2

Now we have arrived into expressing in terms three square operations two shift operations and three

additions and two subtractions. The square can then be solved recursively and applying the same derived formula.

This form now allows us to compute the square of two numbers by computing:

 SQUARES: 3 squaring operations on integers of size up to n / 2 ,

 ADDITIONS: 1 addition operation on integers of size up to 2n,

 SUBTRACTIONS: 2 subtractions one being in on integer of size up to n and the other up to 2n, finally,

Examples

Given
then ,choose therefore , and

Given

then , choose therefore , and

Example

Given
then , choose m , , and ,
hence

8

 SHIFTS: 2 shifts

Addition and subtraction are linear while shifting can be done in constant time. Hence the Square remains the bottleneck. But we shall

see in the next section we can use divide and conquer to further simplify the problem.

This form splits result in a worst case running time of . Hence the worst case running

time equals that of the Karatsuba method described earlier.

Asymptotically the result looks the same. In further later discussion we will discussion we analyze whether using the sums of difference

can lead to better results in , part of

But first we unfold the algorithm for computing squares using the sums of differences.

The algorithm above takes 6 parameters as input;

 result[] contains the result of squaring stored as an array of digits,

 a[] represent the number to be squared also stored as an array of digits,

 fromResult and toResult represent where in the result array the square of the number in a[] has to be stored, and

 from and to represent the number in a[1..n] that need to be squared.

ComputeSquare(result[], a[], fromResult, toResult, from, to)

 if from == to then

 if a[to] = 1 then

 result[toResult] = 1

 else if a[to] = 2 then

 result[toResult] = 4

 else if a[to] = 3 then

 result[toResult] = 9

 else if a[to] = 4 then

 result[fromResult] = 1

 result[toResult] = 6

 else if a[to] = 5 then

 result[fromResult] = 2

 result[toResult] = 5

 else if a[to] = 6 then

 result[fromResult] = 3

 result[toResult] = 6

 else if a[to] = 7 then

 result[fromResult] = 4

 result[toResult] = 9

 else if a[to] = 8 then

 result[fromResult] = 6

 result[toResult] = 4

 else if a[to] = 9 then

 result[fromResult] = 8

 result[toResult] = 1

 return result

 split = Ceiling((from + to) / 2)

 splitResult = toResult - 2 * (to - split + 1) + 1

 int[] aMinusB = new int[to - split + 1]

 int[] resultAMinB = new int[2 * aMinB.Length]

 aMinB = ComputeDifference(a, from, split, to)

 result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1)

 result = ComputeSquare(result, a, splitResult, toResult, split, to)

 resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

 return result

Algorithm 6-1

9

Example

Here is being computed, using the formula, three squares need to be computed. The tree below shows how this can be

done. The left leaf represents the term used to compute , the middle leaf represents the term used to compute , and the right leaf

represents the term used to compute .

Example

Given ,
then would initially be an array of twice the size of the input. ComputeSquare
would then split in half, in this case 8 and 2. As shown below,

a 8 2

result

 would then be computed and separate array to computes
aMinbResult would be created as follows,

aMinb 6

aMinResult 3 6

The square of would next be computed and placed as follows:

a 8 2

result 6 4

Similarly would be computed and placed as follows:

a 8 2

result 6 4 0 4

 Then would be computed and placed as follows:

aMinb 6

aMinResult 3 6

Finally, a merge into using the formula
 would be performed, yield the finally result,

a 8 2

result 6 7 2 4

1

1234

123456789

56789 55555

12 34 56 789 55 555 22 733 500

2 1 3 4 1 2 2 0 5 6 1 7 89 82 33 50

0

7 26 5 5 0 555 5 5 0 5

7 2 8 2 6 3 8 3 0 2 6 4 5 5 0 5 0 5

10

Empirical Results

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were

randomly generated.

Size of number to square Result (seconds)

100000 41

200000 124

300000 257

400000 380

1000000 1331

2000000 4020

Conclusion

Solving using when we get , which agrees when (400000, 380). Therefore

the empirical results agree with theoretical analysis in asymptotic bounds

41 124257380

1331

4020

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500000 1000000 1500000 2000000 2500000

Unoptimized Karatsuba using Sums of Differences

Unoptimized

11

Chapter 7 Space Complexity Optimization
As the algorithm described above illustrated, the result of the left and middle leafs of the tree are both stored in one array of size .

However the right leaf which stores the result of uses a separate array. In this section we will analyze the worst case space

complexity of the algorithm based on this observation.

Given a large integer of size n therefore the left and middle sub-leaf would require an array of size . Computing the right sub tree

would require a bit more for each recursion it makes on its right sub leafs.

To illustrate visually, below, is a diagram that shows the storage of the right sub-leaf. At each level, during the processing of the right

sub-leaf a new array is created of half the size of the level above it. This continues happening until .

The height of the tree is , and observing that successive storage sizes are separated by a factor of , then summing the space

usage

Hence the space complexity is therefore worst case

12

Chapter 8 Time Complexity Optimization
Raw as it is now the complexity of squaring is exactly like the Karatsuba. Besides being simple, does using sums of differences

imply better time complexity than the textbook form of the Karatsuba?

The un-optimized algorithm using the square of difference presented earlier is equivalent in many ways to the Karatsuba. So we will

analyze and present various aspects that have potential of improving it whilst still keeping it simple.

Optimizing on the number of primitive operations required
We saw that on the original Karatsuba, each level required, solving three multiplications, two shift operations, four additions and two

subtractions.

In the un-optimized sum of difference method, it requires solving three square operations, two shift operation and three additions and

three subtractions (the extra subtraction comes about as a result on computing , because some instances would require

 instead.

The amount of primitive operations are the same for both methods, i.e. four additions and two subtractions on the Karatsuba, and

three additions and three subtractions on the one using sums of differences.

We see however that the only one of the subtraction in gets to be unused. Hence we can attempt an improvement, instead of

computing them both all the time we can compute both when it is absolutely necessary.

Modified Algorithm

ComputeSquare(result[], a[], fromResult, toResult, from, to)

 if from == to then

 if a[to] = 1 then

 result[toResult] = 1

 …

 else if a[to] = 9 then

 result[fromResult] = 8

 result[toResult] = 1

 return result

 split = Ceiling((from + to) / 2)

 splitResult = toResult - 2 * (to - split + 1) + 1

 int[] aMinusB = new int[to - split + 1]

 int[] resultAMinB = new int[2 * aMinB.Length]

 aMinB = ComputeDifference(a, split, to, from, split - 1)

 if not aMinBIsCorrect

 aMinB = ComputeDifference(a, from, split - 1, split, to)

 result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1)

 result = ComputeSquare(result, a, splitResult, toResult, split, to)

 resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

 return result

Algorithm 8-1

13

Here the only change is the replacement of the statement

aMinB = ComputeDifference(a, from, split, to)

with

aMinB = ComputeDifference(a, split, to, from, split - 1)

if not aMinBIsCorrect

 aMinB = ComputeDifference(a, from, split - 1, split, to)

Empirical Results

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were

randomly generated.

Size of number to square Result (seconds)

100000 38

200000 114

300000 236

400000 345

1000000 1263

2000000 3603

The graph below presents a comparison between optimizing primitive operation and the optimized version

Co

Conclusion

Reducing the amount of primitive reduces the time spent but not significantly within the asymptotical bounds.

0

1000

2000

3000

4000

5000

0 500000 1000000 1500000 2000000 2500000

Optimized Primitive Operations

Primitive Operations

Unoptimized

Examples

Given
 , and ,

The first algorithm would compute both and and return
The second would attempt compute fail then attempt

Given

The second algorithm would need only one attempt of to succeed.

14

Optimizing using
The un-optimized algorithm uses the formula to compute the square of all

numbers of size . Is that really necessary though? The answer is no. There are cases when we can resort to more efficient

alternatives.

Pruning the tree

The answer lies in the simpler form of the equation above i.e. . In this form, the product can

be computed linearly in the cases when , or have size 1. Hence instead of resorting a third square we directly compute .

Example

In chapter 6, an example of computing was given. It required computing 58 squares. Here the same tree can now be

pruned at the bottom resulting in the need of computing only 37 squares (represented by each box). Note also whenever pruning

occurs, the need to ComputeDifference is also eliminated. Note that the leaves that lead to nowhere are the ones that have been

pruned.

Balancing the tree

Another improvement we can make it to balance the leaves. We observe in many places where split an odd sized number we obtain

three numbers of unequal size, with one of being one size smaller than the other two.

An alternative can be to make the tree even-sized by first splitting it with the left sub-tree having being one-digit number. Then

continue as always.

Example

Given ,

 Currently we would have to compute

 But instead we can compute

Example

Given ,
 We choose , hence we obtain , , and
 Notice is one size smaller than other 2

1

1234

123456789

56789 55555

12 34 56 789 55 555 22 733 500

2 3 4 2 2 5 6 7 89 33 7 5 5 555 5 5 0

7 3 8 3 5 5

15

The worst case running time for tree in the left is ,

The worst case running time for the right tree becomes

, bearing in mind, multiplication is worse

Therefore

Example

We now balance below. Compared to the one in chapter 6 which required computing 58 squares, this one only requires

39 squaring operations

Example

We now prune and balance to obtain the combined effect below. The tree below now requires only 31 operations.

1

123456789

23456789

2345 6789 4444

22 89 67 44 0 44 22 45 23

8 9 0 2 2 0 6 7 0 4 4 0 4 4 0 4 5 1 2 2 0 2 3 1

1

16

Modified Algorithm

 The change here is the addition of the statement which handles the balancing mechanism.

if (split - from) < (to - split + 1)

 split = from + 1;

 Pruning is implemented and maintained by the introduction of the aIsOneDigit = split == from + 1 branching

to avoid ComputeDifference as follows

ComputeSquare(result[], a[], fromResult, toResult, from, to)

 if from == to then

 if a[to] = 1 then

 result[toResult] = 1

 …

 else if a[to] = 9 then

 result[fromResult] = 8

 result[toResult] = 1

 return result

 split = Ceiling((from + to) / 2)

 if (split - from) < (to - split + 1)

 split = from + 1;

 aIsOneDigit = split == from + 1

 splitResult = toResult - 2 * (to - split + 1) + 1

 int[] aMinusB = new int[to - split + 1]

 int[] resultAMinB = new int[2 * aMinB.Length]

 if not aIsOneDigit

 aMinB = ComputeDifference(a, from, split, to)

 result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1)

 result = ComputeSquare(result, a, splitResult, toResult, split, to)

 if aIsOneDigit

 result = Plus2AB(result, a, a[from], to, split, toResult - aMinB.Length)

 else

 resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

 aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

return result

Algorithm 8-2

1

123456789

23456789

2345 6789 4444

22 89 67 44 0 44 22 45 23

8 9 2 2 6 7 4 4 4 4 4 5 2 2 2 3

17

if not aIsOneDigit

 aMinB = ComputeDifference(a, from, split, to)

Computing Plus2AB instead squaring the aMinB and Merging through

if aIsOneDigit

 Plus2AB(ref result, a, a[from], to, split, toResult - aMinB.Length)

 else

resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

 aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

Empirical Results

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were

randomly generated.

Conclusion

The gain observed was significant in altering the value of .

0

1000

2000

3000

4000

5000

0 500000 1000000 1500000 2000000 2500000

Optimizing using 2a1a2

Pruning&Branching

Unoptimized

Size of number to square Result (seconds)

100000 21

200000 60

300000 126

400000 182

1000000 704

2000000 2158

18

Optimizing using
We observed in the previous section that could be used to compute the instead of the longer

form, if that is, can be computed linearly. In section, we will that we can in fact use special cases of to determine

whether is possible.

Case

The first special case is when . We therefore see that

This lead to the observation that only need be computed, shift and merged to compute .

The worst case running time becomes , whenever this situation occurs.

Case

Suppose , where k is an integer and p is positive integer, then once we have computed we can

linearly compute , using the following relation

Which when expanded,

In this form, is already known, can be computed linearly since k is a single digit integer, can also be computed in constant

time since it is single digit square, and are shift operations and thus negligible. Hence has a worst case

 since only two squares need be computed and merged.

Example

Given ,
 We choose , hence we obtain , , and
 Thus we only need to compute , and the rest can be performed linearly to obtain

Given
 We choose , hence we obtain , , and ,

Hence

Hence once is computed, can be solved linearly.

19

Example

In chapter 6, an example of computing was given. It required computing 58 squares. Here the same tree can now be

optimized using information based from computing . This results in the need of computing only 35 squares (represented by

each box). Note that the leaves that lead to nowhere are the ones that have been pruned.

Modified Algorithm

ComputeSquare(result[], a[], fromResult, toResult, from, to)

 if from == to then

 if a[to] = 1 then

 result[toResult] = 1

 …

 else if a[to] = 9 then

 result[fromResult] = 8

 result[toResult] = 1

 return result

 split = Ceiling((from + to) / 2)

 splitResult = toResult - 2 * (to - split + 1) + 1

 int[] aMinusB = new int[to - split + 1]

 int[] resultAMinB = new int[2 * aMinB.Length]

 aMinB = ComputeDiff(a, from, split - 1, split, to, aMinBFrom, aMinBTo, aIsLarger)

 result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1)

 if (aMinBTo < aMinBFrom)

 CopyResultAToBAnd2AB(result, fromResult, splitResult - 1, toResult)

 return result

 else if (aMinBTo == aMinBFrom)

 result = ComputeResultAToBLinearly(result, a, fromResult, splitResult - 1, toResult,

 from, split - 1, aIsLarger, aMinB[aMinBTo], aMinB.Length - aMinBFrom - 1)

 else

 result = ComputeSquare(result, a, splitResult, toResult, split, to)

 resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

 return result

Algorithm 8-3

1

1234

123456789

56789 55555

12 34 56 789 55 22 733 5

1 3 1 2 5 1 7 89 82 33 7 26 5 5 5

2 8 6 3 8 2 4

20

Empirical Results

These results were obtained when running the actual implementation of the algorithm. The numbers producing the results were

randomly generated.

Size of number to square Result (seconds)

100000 41

200000 124

300000 257

400000 315

1000000 1365

2000000 3609

Conclusion

The results seem to suggest the now many number would be benefit from this optimization. Even though there better result as the

number tended to be large, the gap was not significant.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500000 1000000 1500000 2000000 2500000

Optimizing using a2 - a1

a2 - a1

Unoptimized

21

Optimizing using Memoization
Squaring using Karatsuba Method always result in the the tree sub-branching three ways everytime. Hence while squaring a large

number the lower level of tree tend to become very dense and therefore a lot of number end up being re-computed.

Could we do something about this redundancy?

A solution could be to store pre-computed squares for number sizes are likely to contain redundancy, such that, whenever we

encounter a number, we can just retrieve it and write it out in linear time. Storing pre-computed values that can be readily retrieved

and used is what is known as Memoization.

Dictionary data structures exist, that provide functionality to store a value using a key, and retrieve in constant time with that key.

However they become in-efficient when too many records are stored. We therefore use this structure to store a fairly large number and

its corresponding square. For instance we can store all five digit number with their corresponding squares.

This should change our running time formula to

When n = 5,

Example

Suppose we given a 1 million digit number. Using Karatsuba we split the number and half

and end up with 3-half a million sized number, then split those to end-up with 9-quarter a

million digit number and so on, this will continue for levels. We

illustrate this in table below.

Level of Tree Numbers to Square Number of Digits in each Number

0 1 1000000

1 3 500000

2 9 250000

3 27 125000

4 81 62500

5 243 31250

6 729 15625

7 2187 7812

8 6561 3906

9 19683 1953

10 59049 976

11 177147 488

12 531441 244

13 1594323 122

14 4782969 61

15 14348907 30

16 43046721 15

17 129140163 7

18 387420489 3

19 1162261467 1

At level 17, numbers of size 7 need to be computed, this show that from level and

lower a lot of redundant computation occur.

22

We see the running becomes constant at a higher, but the asymptotic complexity still remains the same.

Modified Algorithm

The change to the algorithm is the addition of the lines

 if (to – from <= 5)

 Key = GenerateKeyFromArray(a[], from, to)

 if MemoizedSquares.TryGetValue(Key, squareResult)

 for i = squareResult.Length – 1; i >= 0; i—

 result[toResult] = squareResult[i]

 toResult—

 return result

Here the algorithm assume square for number upto 5 digit have be memorized in a dictionary called MemoizedSquares. To retrieve

the square a key has to be constructed using

Key = GenerateKeyFromArray(a[], from, to)

ComputeSquare(result[], a[], fromResult, toResult, from, to)

 if from == to then

 if a[to] = 1 then

 result[toResult] = 1

 …

 else if a[to] = 9 then

 result[fromResult] = 8

 result[toResult] = 1

 return result

 if (to – from <= 5)

 Key = GenerateKeyFromArray(a[], from, to)

 if MemoizedSquares.TryGetValue(Key, squareResult)

 for i = squareResult.Length – 1; i >= 0; i—

 result[toResult] = squareResult[i]

 toResult—

 return result

 split = Ceiling((from + to) / 2)

 splitResult = toResult - 2 * (to - split + 1) + 1

 int[] aMinusB = new int[to - split + 1]

 int[] resultAMinB = new int[2 * aMinB.Length]

 aMinB = ComputeDifference(a, from, split, to)

 result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1)

 result = ComputeSquare(result, a, splitResult, toResult, split, to)

 resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

 return result

Algorithm 8-4

23

Thereafter the square is retrieved in constant time from the dictionary and written back linearly into result.

Empirical Results

These results were obtained when running the actual implementation of the combined algorithm. The numbers producing the results

were randomly generated.

Size of number to square Result (seconds)

100000 31

200000 94

300000 265

400000 284

1000000 1389

2000000

Conclusion

No gain was seen in the empirical result even though the theoretical analysis seemed very promising. The loss in gain can be attributed

to the implementation of the dictionary. Even thought retrieval is claimed to be in constant time, it may still be that the constant is still

too high. Also generation of the key used for retrieval may be too costly. In our implementation, the key was a string representation of

the number. To overcome these cost the solution may be to store even large square, but then again, the density of redundancy also

drops.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500000 1000000 1500000 2000000 2500000

Optimization using Memoization

Memoization

Unoptimized

24

Combined Effect
In this section we present the final, algorithm, which consists of putting together all optimization that we discussed earlier into one

algorithm. We exclude memorization, due to the poor results that were obtained from it.

To illustrate the effect of combining all the methods, the tree below represents computing

We notice that now 21 numbers need to be squared. This compared to 58 squares on the unoptimized looks promising

1

123456789

23456789

2345 6789 4444

22 89 67 0 44 22 45 23

8 2 6 4 4 2 2

25

Modified Algorithm

ComputeSquare(result[], a[], fromResult, toResult, from, to)

 while (a[from] = 0) and (from < to)

 from++

 while (a[to] = 0) and (from < to)

 to—

 if from == to

 if a[to] = 1 then

 result[toResult] = 1

 …

 else if a[to] = 9 then

 result[fromResult] = 8

 result[toResult] = 1

 return result

 split = Ceiling((from + to) / 2)

 if (split - from) < (to - split + 1)

 split = from + 1;

 aIsOneDigit = split == from + 1

 splitResult = toResult - 2 * (to - split + 1) + 1

 int[] aMinusB = new int[to - split + 1]

 int[] resultAMinB = new int[2 * aMinB.Length]

 if not aIsOneDigit

 aMinB = ComputeDifference(a, split, to, from, split – 1,

 aMinBFrom, aMinBTo, aIsLarger)

 if not aMinBIsCorrect(aMinB)

 aMinB = ComputeDifference(a, from, split - 1, split, to,

 aMinBFrom, aMinBTo, aIsLarger)

 result = ComputeSquare(result, a, fromResult, splitResult - 1, from, split - 1)

 if aMinBTo < aMinBFrom

 CopyResultAToBAnd2AB(result, fromResult, splitResult - 1, toResult)

 return result

 if (aMinBTo == aMinBFrom) and not aIsOneDigit

 result = ComputeResultAToBLinearly(result, a, fromResult, splitResult - 1, toResult,

 from, split - 1, aIsLarger, aMinB[aMinBTo], aMinB.Length - aMinBFrom - 1)

 else

 result = ComputeSquare(result, a, splitResult, toResult, split, to)

 if aIsOneDigit

 result = Plus2AB(result, a, a[from], to, split, toResult - aMinB.Length)

 else

 resultAMinB = ComputeSquare(resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

 aMinusB.Length - 1)

 result = Merge2AB(result, resultAMinB, fromResult, splitResult, toResult)

 return result

Algorithm 8-5

26

Empirical Results

These results were obtained when running the actual implementation of the combined algorithm. The numbers producing the results

were randomly generated.

Size of number to square Result (seconds)

100000 18

200000 55

300000 113

400000 167

1000000 656

2000000 1963

The graph below shows running time of the all methods that were implemented. The combined method is also included for comparison.

Also note that the combined does not include memorization.

Conclusion

The combined effect was clearly much better than the un-optimized version of the algorithm. Its worst case running still shows a trend

in with its constant very much improved. Pruning and Balancing were major contributors in lowering the constant .

Memoization is the only method that excluded in the combined effect.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500000 1000000 1500000 2000000 2500000

Combined

Unoptimized

Primitive Operations

Pruning&Balancing

a2 - a1

Memoization

27

Chapter 9 Conclusion
The goal of this project was to demonstrate that multiplying number can also be done efficiently using the Karatsuba Algorithm with

Sums of Differences. The results obtained from attempting to optimize squaring based on the properties of Sums of Difference ranged

from insignificant (primitive and), good (branching and pruning), and worse (memorization).

Encouragingly, the methods that improved the algorithm were also very simple, keeping the algorithm still simple and easy to

understand.

The positive results also seemed to reinforce the idea that, since squares have powerful properties, it seems promising to investigate for

more of those that may improve the worst case running time even more significantly in the area of Large Integer Multiplication.

28

Chapter 10 Appendix
using System;

using System.Collections.Generic;

using System.Text;

namespace DodomaAlgorithm

{

 using System;

 using System.Collections.Generic;

 using System.Text;

 using System.Collections;

 class Program

 {

 static Dictionary<String, byte[]> squares = new Dictionary<String, byte[]>();

 static int counter = 0;

 static void Main(string[] args)

 {

 // This commented out part is used for the memozation optimizition

 /*

 for (Int64 i = 100000; i < 1000000; i++)

 {

 int inputPositionA = 0;

 StringBuilder inputA = new StringBuilder(i.ToString());

 byte[] numberA = new byte[inputA.Length];

 for (inputPositionA = 0; inputPositionA < inputA.Length; inputPositionA++)

 {

 numberA[inputPositionA] = Convert.ToByte(inputA.ToString(inputPositionA,

 1));

 }

 int count = 0;

 squares.Add(i.ToString(), Integer_BinarySquare(numberA, ref inputA, ref

 count));

 }

 */

 // ComputeSquares(new StringBuilder("326926509420845"));

 // The following part generates a random number and the call ComputesSquares

 Random randomNumber = new Random();

 counter = 0;

 //squares.Clear();

 for (int j = 0; j < 1; j++)

 {

 StringBuilder largeRandomNumber = new StringBuilder();

 for (int i = 0; i < 40000; i++)

 {

 int value = randomNumber.Next(11111, 99999);

 largeRandomNumber.Append(value);

 }

 ComputeSquares(largeRandomNumber);

 }

 //ComputeFactors1(new StringBuilder("56784487"));

 Console.Read();

 }

 static void ComputeSquares(StringBuilder Input)

 {

29

 int inputPosition = 0;

 byte[] numberA = new byte[Input.Length];

 inputPosition++;

 for (inputPosition = 0; inputPosition < Input.Length; inputPosition++)

 {

 numberA[inputPosition] = Convert.ToByte(Input.ToString(inputPosition, 1));

 }

 DateTime startTime = DateTime.Now;

 Console.WriteLine(startTime);

 int count = 0;

 byte[] a = Integer_BinarySquare(numberA, ref Input, ref count);

 counter = count;

 DateTime stopTime = DateTime.Now;

 Console.WriteLine(stopTime);

 Console.WriteLine("operations =" + count + ";");

 TimeSpan duration = stopTime - startTime;

 Console.WriteLine(inputPosition);

 Console.WriteLine(duration);

 }

 static byte[] Integer_BinarySquare(byte[] a, ref StringBuilder aString, ref int count)

 {

 byte[] result = new byte[2 * a.Length];

 byte[] input = new byte[a.Length];

 count = 0;

 ComputeSquaresBinaryMethod(ref result, a, 0, 2 * a.Length - 1, 0, a.Length - 1, ref

 count);

 return (result);

 }

 static void ComputeSquaresBinaryMethod(ref byte[] result, byte[] a, int fromResult, int

 toResult, int from, int to, ref int count)

 {

 // This is the CORE PART of the algoritm to compute squares.

 while ((a[from] == 0) && (from < to))

 {

 from++;

 fromResult = fromResult + 2;

 }

 while ((a[to] == 0) && (from < to))

 {

 to--;

 toResult = toResult - 2;

 }

 if (to < from)

 return;

 if (from == to)

 {

 switch (a[to])

 {

 case 0:

 break;

 case 1:

 result[toResult] = 1;

 break;

 case 2:

30

 result[toResult] = 4;

 break;

 case 3:

 result[toResult] = 9;

 break;

 case 4:

 result[fromResult] = 1;

 result[toResult] = 6;

 break;

 case 5:

 result[fromResult] = 2;

 result[toResult] = 5;

 break;

 case 6:

 result[fromResult] = 3;

 result[toResult] = 6;

 break;

 case 7:

 result[fromResult] = 4;

 result[toResult] = 9;

 break;

 case 8:

 result[fromResult] = 6;

 result[toResult] = 4;

 break;

 case 9:

 result[fromResult] = 8;

 result[toResult] = 1;

 break;

 }

 //count++;

 return;

 }

 // This part is can be commented out if memoization has to be used.

 /*

 if (to - from == 5)

 {

 StringBuilder sq = new StringBuilder();

 for (int i = from; i <= to; i++)

 {

 sq.Append(a[i]);

 }

 byte[] square = null;

 if (squares.TryGetValue(sq.ToString(), out square))

 {

 for (int i = square.Length - 1; i >= 0; i--)

 {

 result[toResult] = square[i];

 toResult--;

 }

 return;

 }

 }

 */

 int split = (int)Math.Ceiling((double)(from + to) / 2);

 int toSplitPlus1 = to - split + 1;

 if ((split - from) < toSplitPlus1)

31

 {

 split = from + 1;

 toSplitPlus1 = to - split + 1;

 }

 bool aIsOneDigit = split == from + 1;

 int splitResult = toResult - 2 * toSplitPlus1 + 1;

 int twoABIndex = toResult - toSplitPlus1;

 int toA = split - 1;

 int toResultA = splitResult - 1;

 byte[] aMinB = null;

 //new byte[to - split + 1];

 int aMinBFrom = 0;

 int aMinBTo = 0;

 bool aIsLarger = true;

 if (!aIsOneDigit)

 {

 aMinB = ComputeDiff(a, split, to, from, toA, out aMinBFrom, out aMinBTo, ref

 aIsLarger /* ref InputAMinB,*/ /* ref count */);

 aIsLarger = !aIsLarger;

 if (aMinB == null)

 {

 aMinB = ComputeDiff(a, from, toA, split, to, out aMinBFrom, out aMinBTo, ref

 aIsLarger /* ref InputAMinB,*/ /* ref count */);

 }

 }

 ComputeSquaresBinaryMethod(ref result, a, fromResult, toResultA, from, toA, /* ref

 InputA,*/ ref count);

 if (aMinBTo < aMinBFrom)

 {

 CopyResultAToBAnd2AB(ref result, fromResult, toResultA, toResult, twoABIndex, ref

 count);

 return;

 }

 if (!aIsOneDigit && (aMinBTo == aMinBFrom))

 {

 ComputeResultAToBLinearly(ref result, a, fromResult, toResultA, toResult, from, toA,

 aIsLarger, aMinB[aMinBTo], aMinB.Length - aMinBFrom - 1, ref count);

 }

 else

 {

 ComputeSquaresBinaryMethod(ref result, a, splitResult, toResult, split, to, ref

 count);

 }

 if (aIsOneDigit)

 Plus2AB(ref result, a, a[from], to, split, twoABIndex, ref count);

 else

 {

 byte[] resultAMinB = new byte[2 * aMinB.Length];

 ComputeSquaresBinaryMethod(ref resultAMinB, aMinB, 0, resultAMinB.Length - 1, 0,

 aMinB.Length - 1, ref count);

 Merge(ref result, resultAMinB, fromResult, splitResult, toResult, twoABIndex, ref

 count);

 }

 }

32

 static void CopyResultAToB(ref byte[] result, int fromResultA, int toResultA, int

 toResultB, ref int count)

 {

 // count++;

 int indexBForASq = toResultB;

 for (int j = toResultA; j >= fromResultA; j--)

 {

 result[indexBForASq] = result[j];

 indexBForASq--;

 }

 }

 static void CopyResultAToBAnd2AB(ref byte[] result, int fromResultA, int toResultA, int

 toResultB, int twoABIndex, ref int count)

 {

 // count++;

 int subAddB = 0;

 int subAdd2AB = 0;

 int remB = 0;

 int rem2AB = 0;

 while (true)

 {

 subAddB = result[toResultB] + result[toResultA] + remB;

 subAdd2AB = result[twoABIndex] + result[toResultA] * 2 + rem2AB;

 remB = 0;

 rem2AB = 0;

 if (subAddB > 9)

 {

 subAddB = subAddB - 10;

 remB = 1;

 }

 if (subAdd2AB > 9)

 {

 if (subAdd2AB > 19)

 {

 subAdd2AB = subAdd2AB - 20;

 rem2AB = 2;

 }

 else if (subAdd2AB > 9)

 {

 subAdd2AB = subAdd2AB - 10;

 rem2AB = 1;

 }

 }

 result[toResultB] = (byte)subAddB;

 result[twoABIndex] = (byte)subAdd2AB;

 if (fromResultA == toResultA)

 break;

 twoABIndex--;

 toResultB--;

 toResultA--;

 }

 while (rem2AB != 0)

 {

 twoABIndex--;

33

 subAdd2AB = result[twoABIndex] + rem2AB;

 rem2AB = 0;

 if (subAdd2AB > 9)

 {

 subAdd2AB = subAdd - 10;

 rem2AB = 1;

 }

 result[twoABIndex] = (byte)subAdd2AB;

 }

 while (remB != 0)

 {

 toResultB--;

 subAddB = result[toResultB] + remB;

 remB = 0;

 if (subAddB > 9)

 {

 subAddB = subAdd - 10;

 remB = 1;

 }

 result[toResultB] = (byte)subAddB;

 }

 }

 static void ComputeResultAToBLinearly(ref byte[] result, byte[] a, int fromResultA, int

 toResultA, int toResultB, int fromA, int toA, bool aIsLarger, int k, int offset, ref

 int count)

 {

 //count++;

 int indexBForASq = toResultB - 2 * offset;

 switch (k)

 {

 case 1:

 result[indexBForASq] = 1;

 break;

 case 2:

 result[indexBForASq] = 4;

 break;

 case 3:

 result[indexBForASq] = 9;

 break;

 case 4:

 result[indexBForASq - 1] = 1;

 result[indexBForASq] = 6;

 break;

 case 5:

 result[indexBForASq - 1] = 2;

 result[indexBForASq] = 5;

 break;

 case 6:

 result[indexBForASq - 1] = 3;

 result[indexBForASq] = 6;

 break;

 case 7:

 result[indexBForASq - 1] = 4;

 result[indexBForASq] = 9;

 break;

 case 8:

 result[indexBForASq - 1] = 6;

 result[indexBForASq] = 4;

 break;

34

 case 9:

 result[indexBForASq - 1] = 8;

 result[indexBForASq] = 1;

 break;

 }

 int rem = 0;

 int subAdd = 0;

 indexBForASq = toResultB;

 int startAt = toResultA;

 if (fromResultA > toResultA)

 fromResultA = fromResultA + 0;

 while (true)

 {

 if ((result[indexBForASq] == 0) && (rem == 0))

 {

 result[indexBForASq] = result[toResultA];

 }

 else

 {

 subAdd = result[indexBForASq] + result[toResultA] + rem;

 rem = 0;

 if (subAdd > 19)

 {

 subAdd = subAdd - 20;

 rem = 2;

 }

 else if (subAdd > 9)

 {

 subAdd = subAdd - 10;

 rem = 1;

 }

 result[indexBForASq] = (byte)subAdd;

 }

 if (toResultA == fromResultA)

 break;

 toResultA--;

 indexBForASq--;

 }

 while (rem != 0)

 {

 indexBForASq--;

 subAdd = result[indexBForASq] + rem;

 rem = 0;

 if (subAdd > 9)

 {

 subAdd = subAdd - 10;

 rem = 1;

 }

 result[indexBForASq] = (byte)subAdd;

 }

 //count++;

 indexBForASq = toResultB - offset;

 if (aIsLarger)

 {

 k = -k;

 Minus2AB(ref result, a, k, toA, fromA, indexBForASq, ref count);

 }

 else

 {

35

 Plus2AB(ref result, a, k, toA, fromA, indexBForASq, ref count);

 }

 }

 static void Merge(ref byte[] result, byte[] resultC, int fromA, int fromB, int toB, int

 fromResultIndex, ref int count)

 {

 int aIndex = fromB - 1;

 int bIndex = toB;

 int cIndex = resultC.Length - 1;

 int subResultIndex = fromResultIndex - fromB;

 int resultIndex = fromResultIndex;

 int subAdd = 0;

 int rem = 0;

 int[] subResultB = new int[fromResultIndex - fromB + 1];

 bool useSubResultB = false;

 for (int i = resultC.Length; i > 0; i--)

 {

 //count++;

 if (!useSubResultB)

 {

 useSubResultB = bIndex == fromResultIndex;

 if (useSubResultB)

 bIndex = subResultB.Length - 1;

 }

 if (subResultIndex >= 0)

 subResultB[subResultIndex] = result[resultIndex];

 if (aIndex < fromA)

 {

 if (useSubResultB)

 subAdd = result[resultIndex] + subResultB[bIndex] - resultC[cIndex] + rem;

 else

 subAdd = result[resultIndex] + result[bIndex] - resultC[cIndex] + rem;

 }

 else

 {

 if (useSubResultB)

 subAdd = result[resultIndex] + result[aIndex] + subResultB[bIndex] –

 resultC[cIndex] + rem;

 else

 subAdd = result[resultIndex] + result[aIndex] + result[bIndex] - resultC[cIndex]

 + rem;

 }

 rem = 0;

 if (subAdd > 19)

 {

 rem = 2;

 subAdd = subAdd - 20;

 }

 else if (subAdd > 9)

 {

 rem = 1;

 subAdd = subAdd - 10;

 }

 else if (subAdd < 0)

 {

 rem = -1;

 subAdd = subAdd + 10;

36

 }

 result[resultIndex] = (byte)subAdd;

 aIndex--;

 bIndex--;

 cIndex--;

 resultIndex--;

 subResultIndex--;

 }

 while (rem != 0)

 {

 //count++;

 subAdd = result[resultIndex] + rem;

 rem = 0;

 if (rem > 10)

 {

 rem = 1;

 subAdd = subAdd - 10;

 }

 if (rem < 0)

 {

 rem = -1;

 subAdd = subAdd + 10;

 }

 result[resultIndex] = (byte)subAdd;

 resultIndex--;

 }

 }

 static byte[] ComputeDiff(byte[] a, int fromA, int toA, int fromB, int toB, out int

 aMinBFrom, out int aMinBTo, ref bool aIsLarger /* ref int count */)

 {

 byte[] aMinB = new byte[(toA - fromA - (toB - fromB) > 0 ? toA - fromA + 1 : toB –

 fromB + 1)];

 int indexAminB = aMinB.Length - 1;

 int subMin = 0;

 aMinBTo = aMinB.Length - 1;

 aMinBFrom = 0;

 aIsLarger = true;

 int rem = 0;

 while (true)

 {

 subMin = aMinB[indexAminB];

 bool useA = toA >= fromA;

 bool useB = toB >= fromB;

 if (useA && useB)

 {

 subMin = subMin + a[toA] - a[toB] + rem;

 }

 else if (useA)

 {

 subMin = subMin + a[toA] + rem;

 }

 else if (useB)

 {

 subMin = subMin - a[toB] + rem;

 }

 rem = 0;

 if ((subMin < 0) && (indexAminB >= 0))

37

 {

 subMin = subMin + 10;

 rem = -1;

 }

 aMinB[indexAminB] = (byte)subMin;

 if (indexAminB == 0)

 {

 if (rem != 0)

 aMinB = null;

 break;

 }

 toA--;

 toB--;

 indexAminB--;

 }

 if (aMinB == null)

 return aMinB;

 while ((aMinB[aMinBFrom] == 0) && (aMinBFrom < aMinBTo))

 {

 aMinBFrom++;

 //count++;

 }

 while ((aMinB[aMinBTo] == 0) && (aMinBFrom < aMinBTo))

 {

 aMinBTo--;

 //count++;

 }

 if ((aMinBFrom == aMinBTo) && (aMinB[aMinBFrom] == 0))

 {

 aMinBTo = -1;

 }

 return aMinB;

 }

 static void Plus2AB(ref byte[] result, byte[] a, int valueA, int toB, int fromB, int

 fromResultIndex, ref int count)

 {

 int resultIndex = fromResultIndex;

 int remainder = 0;

 int indexB = toB;

 int subMultiply = 0;

 if (valueA == 0)

 return;

 valueA = 2 * valueA;

 //if (fromA == split - 1)

 {

 while (true)

 {

 // count++;

 if (indexB >= fromB)

 {

 subMultiply = valueA * a[indexB] + remainder + result[resultIndex];

 }

 else

 subMultiply = remainder + result[resultIndex];

 remainder = 0;

 if (subMultiply < 100)

38

 {

 if (subMultiply < 10)

 {

 //result[resultIndex] = subMultiply;

 remainder = 0;

 }

 else if (subMultiply < 20)

 {

 subMultiply = subMultiply - 10;

 remainder = 1;

 }

 else if (subMultiply < 30)

 {

 subMultiply = subMultiply - 20;

 remainder = 2;

 }

 else if (subMultiply < 40)

 {

 subMultiply = subMultiply - 30;

 remainder = 3;

 }

 else if (subMultiply < 50)

 {

 subMultiply = subMultiply - 40;

 remainder = 4;

 }

 else if (subMultiply < 60)

 {

 subMultiply = subMultiply - 50;

 remainder = 5;

 }

 else if (subMultiply < 70)

 {

 subMultiply = subMultiply - 60;

 remainder = 6;

 }

 else if (subMultiply < 80)

 {

 subMultiply = subMultiply - 70;

 remainder = 7;

 }

 else if (subMultiply < 90)

 {

 subMultiply = subMultiply - 80;

 remainder = 8;

 }

 else if (subMultiply < 100)

 {

 subMultiply = subMultiply - 90;

 remainder = 9;

 }

 }

 else if (subMultiply < 110)

 {

 subMultiply = subMultiply - 100;

 remainder = 10;

 }

 else if (subMultiply < 120)

 {

 subMultiply = subMultiply - 110;

39

 remainder = 11;

 }

 else if (subMultiply < 130)

 {

 subMultiply = subMultiply - 120;

 remainder = 12;

 }

 else if (subMultiply < 140)

 {

 subMultiply = subMultiply - 130;

 remainder = 13;

 }

 else if (subMultiply < 150)

 {

 subMultiply = subMultiply - 140;

 remainder = 14;

 }

 else if (subMultiply < 160)

 {

 subMultiply = subMultiply - 150;

 remainder = 15;

 }

 else if (subMultiply < 170)

 {

 subMultiply = subMultiply - 160;

 remainder = 16;

 }

 else if (subMultiply < 180)

 {

 subMultiply = subMultiply - 170;

 remainder = 17;

 }

 else if (subMultiply < 190)

 {

 subMultiply = subMultiply - 180;

 remainder = 18;

 }

 else

 {

 subMultiply = subMultiply - 190;

 remainder = 19;

 }

 result[resultIndex] = (byte)subMultiply;

 indexB--;

 resultIndex--;

 if ((indexB < fromB) && (remainder == 0))

 break;

 }

 }

 }

 static void Minus2AB(ref byte[] result, byte[] a, int valueA, int toB, int fromB, int

 fromResultIndex, ref int count)

 {

 int resultIndex = fromResultIndex;

 int remainder = 0;

 int indexB = toB;

 int subMultiply = 0;

 valueA = 2 * valueA;

40

 while (true)

 {

 // count++;

 if (indexB >= fromB)

 {

 subMultiply = valueA * a[indexB] + remainder + result[resultIndex];

 }

 else

 subMultiply = remainder + result[resultIndex];

 remainder = 0;

 if (subMultiply >= -10)

 {

 subMultiply = subMultiply + 10;

 remainder = -1;

 }

 else if (subMultiply >= -20)

 {

 subMultiply = subMultiply + 20;

 remainder = -2;

 }

 else if (subMultiply >= -30)

 {

 subMultiply = subMultiply + 30;

 remainder = -3;

 }

 else if (subMultiply >= -40)

 {

 subMultiply = subMultiply + 40;

 remainder = -4;

 }

 else if (subMultiply >= -50)

 {

 subMultiply = subMultiply + 50;

 remainder = -5;

 }

 else if (subMultiply >= -60)

 {

 subMultiply = subMultiply + 60;

 remainder = -6;

 }

 else if (subMultiply >= -70)

 {

 subMultiply = subMultiply + 70;

 remainder = -7;

 }

 else if (subMultiply >= -80)

 {

 subMultiply = subMultiply + 80;

 remainder = -8;

 }

 else if (subMultiply >= -90)

 {

 subMultiply = subMultiply + 90;

 remainder = -9;

 }

 else if (subMultiply >= -100)

 {

 subMultiply = subMultiply + 100;

 remainder = -10;

41

 }

 else if (subMultiply >= -110)

 {

 subMultiply = subMultiply + 110;

 remainder = -11;

 }

 else if (subMultiply >= -120)

 {

 subMultiply = subMultiply + 120;

 remainder = -12;

 }

 else if (subMultiply >= -130)

 {

 subMultiply = subMultiply + 130;

 remainder = -13;

 }

 else if (subMultiply >= -140)

 {

 subMultiply = subMultiply + 140;

 remainder = -14;

 }

 else if (subMultiply >= -150)

 {

 subMultiply = subMultiply + 150;

 remainder = -15;

 }

 else if (subMultiply >= -160)

 {

 subMultiply = subMultiply + 160;

 remainder = -16;

 }

 else if (subMultiply >= -170)

 {

 subMultiply = subMultiply + 170;

 remainder = -17;

 }

 else if (subMultiply >= -180)

 {

 subMultiply = subMultiply + 180;

 remainder = -18;

 }

 else if (subMultiply >= -190)

 {

 subMultiply = subMultiply + 190;

 remainder = -19;

 }

 result[resultIndex] = (byte)subMultiply;

 indexB--;

 resultIndex--;

 if ((indexB < fromB) && (remainder == 0))

 break;

 }

 }

 static byte[] ComputeProduct(StringBuilder InputA, StringBuilder InputB)

 {

 if (InputA.Length > InputB.Length)

 {

42

 StringBuilder inputC = InputA;

 InputA = InputB;

 InputB = inputC;

 }

 int inputPositionA = 0;

 byte[] numberA = new byte[InputA.Length];

 inputPositionA++;

 for (inputPositionA = 0; inputPositionA < InputA.Length; inputPositionA++)

 {

 numberA[inputPositionA] = Convert.ToByte(InputA.ToString(inputPositionA, 1));

 }

 int inputPositionB = 0;

 byte[] numberB = new byte[InputB.Length];

 inputPositionB++;

 for (inputPositionB = 0; inputPositionB < InputB.Length; inputPositionB++)

 {

 numberB[inputPositionB] = Convert.ToByte(InputB.ToString(inputPositionB, 1));

 }

 DateTime startTime = DateTime.Now;

 //Console.WriteLine(startTime);

 int count = 0;

 byte[] a = Integer_BinarySquare(numberA, ref InputA, ref count);

 byte[] b = Integer_BinarySquare(numberB, ref InputB, ref count);

 byte[] aMinB = new byte[(InputA.Length > InputB.Length ? InputA.Length :

 InputB.Length)];

 byte[] result = new byte[InputA.Length + InputB.Length];

 bool enterA = true;

 int indexA = 0;

 int indexB = 0;

 for (int i = 0; i < result.Length; i++)

 {

 if (enterA)

 {

 result[i] = numberA[indexA];

 indexA++;

 enterA = indexA < numberA.Length;

 }

 else

 {

 result[i] = numberB[indexB];

 indexB++;

 }

 }

 int aMinBFrom = 0;

 int diffFromA = 0;

 int diffToA = numberA.Length - 1;

 int diffFromB = numberA.Length;

 int diffToB = result.Length - 1;

 int aMinBTo = 0;

 bool aIsLarger = true;

 StringBuilder InputC = new StringBuilder();

 ComputeDiff(result, diffFromA, diffToA, diffFromB, diffToB, out aMinBFrom, out

 aMinBTo, ref aIsLarger /* ref InputC,*/ /* ref count */);

 byte[] c = Integer_BinarySquare(aMinB, ref InputC, ref count);

 indexA = a.Length - 1;

43

 indexB = b.Length - 1;

 int indexC = c.Length - 1;

 int rem = 0;

 for (int i = result.Length - 1; i >= 0; i--)

 {

 //count++;

 int subResult = rem;

 rem = 0;

 if (indexA >= 0)

 subResult = subResult + a[indexA];

 if (indexB >= 0)

 subResult = subResult + b[indexB];

 if (indexC >= 0)

 subResult = subResult - c[indexC];

 if (subResult > 9)

 {

 subResult = subResult - 10;

 rem = 1;

 }

 if (subResult < 0)

 {

 subResult = subResult + 10;

 rem = -1;

 }

 result[i] = (byte)subResult;

 indexA--;

 indexB--;

 indexC--;

 }

 // Divide by two

 rem = 0;

 int subDivide = 0;

 for (int i = 0; i < result.Length; i++)

 {

 //count++;

 subDivide = rem + result[i];

 rem = 0;

 switch (subDivide)

 {

 case 1:

 subDivide = 0;

 rem = 10;

 break;

 case 2:

 subDivide = 1;

 break;

 case 3:

 rem = 10;

 subDivide = 1;

 break;

 case 4:

 subDivide = 2;

 break;

 case 5:

 rem = 10;

 subDivide = 2;

 break;

 case 6:

 subDivide = 3;

44

 break;

 case 7:

 rem = 10;

 subDivide = 3;

 break;

 case 8:

 subDivide = 4;

 break;

 case 9:

 rem = 10;

 subDivide = 4;

 break;

 case 10:

 subDivide = 5;

 break;

 case 11:

 rem = 10;

 subDivide = 5;

 break;

 case 12:

 subDivide = 6;

 break;

 case 13:

 rem = 10;

 subDivide = 6;

 break;

 case 14:

 subDivide = 7;

 break;

 case 15:

 rem = 10;

 subDivide = 7;

 break;

 case 16:

 subDivide = 8;

 break;

 case 17:

 rem = 10;

 subDivide = 8;

 break;

 case 18:

 subDivide = 9;

 break;

 case 19:

 rem = 10;

 subDivide = 9;

 break;

 }

 result[i] = (byte)subDivide;

 }

 return result;

 }

 }

}

45

Chapter 11 Deliverable 1

Question 1
Give an O(n(m + r) time algorithm for the SR-problem for S, R, and T. Your

algorithm should solve the problem in O(n(m + r) time.

Solution
Let V be the result string obtained from searching string T for pattern S and

replacing occurrences with string R. The length of T, S and R being n, m, and r.

The algorithm can described as:

 i, j = 0 // (1)

 while (i < n) do // (2)

 if (i < n - m) // (3)

 j = 0 // (4)

 while (j < m) and (i + j < n) and (S[j] = T[i + j]) do // (5)

 if (j == m - 1) // (6) Match found of S in T.

 V = V + R // (7) Result string V updated with R.

 i = i + m - 1 // (8) Search in T shift m places.

 else // (9)

 j = j + 1 // (10)

 if (j < m - 1) // (11)S not found in T

 V = V + T[i] // (12)Character in T append to V when S notmatched

 i = i + 1 // (13)Shift outer loop.

1. The outerloop (line 2) can shift up to a maximum n-times, that is, if there
is no match of S in T (line 6 is never satisfied)

2. The next inner loop (line 5) can shift up to a maximum m-times, that is if
string S is matches in T (line 6 is satisfied)

3. The replacing part (line 7) shifts upto a maximum r-times to append string R
into V.

Hence this algorithm takes O(n(m + r)). The algoritm never reaches this bound

however because statement (1) and (2) rely on the opposite condtion (6) to

occur.

Question 2
Find the best-case and worst-case running time of your algorithm and discuss which

properties of the input may result in the best-case and worst-case performance,

respectively.

Solution
As can be observed from the algorithm above, the best-case running-time of the
algoritm is when it avoids going into branch (5), that is for character of string S

does not occur in the string T in the first n – m places.

This would result in a best-case performance of O(n).

The worst-case running time would be encountered when condition (5) is satified.

46

The two worst-case scenario can be derived depending on the size of m and r:

1. r is small: Then it is better to allow condition (5) to always be met be
never condition(6). The worst-case therefore arise when m = n / 2 and T

contains matches upto the m – 1 character.

 This would give rise to:

2. r is very large: Then it is better to always allow condition (5) and (6) to
always be satified. The worst-case would therefore arise when m = 1 and T

contains only character found in S.

Question 3
Suppose that you only want to search and replace complete words in the document. How does this affect the problem? Design an

algorithm for this variant.

The following algorithm searches and replaces words only. The testWord flag is introduced to indicate when a word has begun so that a

test should spring into action. Otherwise string V just copies the characters in linear time.

Solution
 i, j = 0, // (1)

 testWord = true // (2)

 while (i < n) do // (3)

 if (i < n - m) // (4)

 j = 0 // (5)

 while (j < m) and (i + j < n) and (S[j] = T[i + j]) and testWord do //(6)

 if (j == m - 1) and (T[i + 1] = ‘ ‘) // (7)Match found of word in S in T.

 V = V + R // (8) Result string V updated with R.

 i = i + m - 1 // (9) Search in T shift m places.

 else // (10)

 testWord = false // (11)

 j = j + 1 // (12)

 if (j < m - 1) // (13)S not found in T

 V = V + T[i] // (14)Character in T append to V when S notmatched

 testWord = T[i + 1] = ‘ ‘;// (15) or any other line terminating chars.

 i = i + 1 // (16)Shift outer loop.

1. The outerloop (line 2) remains unaffected
2. The next inner loop (line 6) is modified is check whether the word needs

testing and can shift up to a maximum m-times, that is if string S is matches

in T (line 6 is satisfied)

3. The replacing part (line 7) shifts upto a maximum r-times to append string R
into V.

Question 4
The overlap of two strings A and B, denoted overlap(A,B) is the longest suffix of A

that is a prefix of B. For instance, Overlap(ababa, ababc) = aba. Suppose that you

47

are given a data structure for S that for any and supports the following

query in constant time:

Use this data structure to design a faster algorithm for the SR-problem.

Solution

The algorithm can described as:

 i, j = 0 // (1)

 while (i < n) do // (2)

 if (i < n - m) // (3)

 while (j < m) and (i + j < n) and (S[j] = T[i + j]) do // (4)

 if (j == m - 1) // (5) Match found of S in T.

 V = V + R // (6) Result string V updated with R.

 else // (7)

 j = j + 1 // (8)

 if (j > 0) // (9)

 ovl = overlapLength(S[1..j], S) // (10)

 if (j < m - 1) // (11)

 V = V + T[i..i + j – ovl]// apppend in V the chars to be skipped by i

 i = i + j – ovl - 1 // shift i (13)

 else // (14)

 V = V + T[i] // (15)Character in T append to V when S notmatched

 i = i + 1 // (16)Shift outer loop.

The above algoritm is very much similar to the one solved in Question 1. The key

distinction in the impact of the OverlapLength function. In step 9 to 13, i, the

outer loop can be shifted at least once. At the same time testing in S need not

resume at the first character. This leads to a dramatic reduction of loops, such

the algoritm becomes linear polnomial.It therefore reduces to a O(n + r).

Question 5
Show how to build a data structure in time supporting OverlapLength queries

for S in constant time.

Solution
You can construct such a data structure using an array of size m integers.

Question 6
Combine the data structure from exercise 5 and the algorithm from exercise 4 to

give a new algorithm for the S-R problem. Compare the new algoritm with the one

from exercise 1.

Solution
The OverlapLengh array can be constructed once. This can be done right at the

beginning of the algorithm of exercise 4.

The combined time will then be

48

This is must faster compared to the runnning time seen in exercise 1.

49

Chapter 12 Deliverable 2

Question 1
The solution is to use an algorithm that avoid comparing the ”don’t care” characters such that, it shift the matching to the next ”non-

don’t care character”.

To be able to do so, the algorithm would have to perform the following:

1. Construct a data structure S’ such that S’ contains the shift needed at point S*i+

shift 0

position 0

for (i 1; i++; i < m)

 if s[i] = DontCareChar then

 s’*pos+ s’*position] + 1

 else

 s’*i+ = 0

 position = i

Example:

 Suppose then the

2. Implement a naïve search replace but with the following optimization whenever it achieve a partial match it then proceed to

perform the next match based on the shift suggested by the data structure s’ that was generated.

Example:

Suppose we have and .

Therefore

When shift = 0,

T 1 1 1 1 1 3 4

S 1 3 4

S’ 3 0 0 0 0 0

The first character is matched (green), then s’ causes the next character to attempt matching to be shift by three

(orange region is skipped), where it fails (red)

When shift = 1,

T 1 1 1 1 1 3 4

S 1 3 4

S’ 3 0 0 0 0 0

Because of the mismatch the algorithms moves on with next shift.

The first character is matched (green), then s’ causes the next character to attempt matching to be shifted by three

(orange region is skipped). It consequently matches the remaining part successfully and replaces it.

Time-complexity
The first part for creating the data structure s’ would cost linear time in: as it scans each character in S once.

50

The second part of the algorithm would cost – where k is the number of DontCareCharacters. Hence for each shift , there

would be m – k attempt to match.

Replacing would cost , where occ is the number of occurrence of S in T.

Hence the total time complexity would be –

Space complexity
The solution would require additional space to store s’:

Question 2
To be able to find subsequence occurrences of S in T, the algorithm would have to scan left to right on T once. For each character in T it

would have to compare the the jth character in S that has not yet been matched. Initially j is the index to the first character in S.

Whenver a match is encountered, the index of T is recorded and j is shift by one. When the full length of S has been matched, the result

of the indexes of T that were matched are then printed and j is reset to the index of the first character again. The next subsequence is

then matched.

j 0

for (i 0; i++; i < n)

 if s[j] = T[i]

 result i + ‘;’

 if j = m – 1

 print “subsequence found = ” + result

 j 0

 else

 j j + 1

Time-complexity
The algorithm above simply goes through each character in T once with cost

 If the algorithm had to find each subsequence.

Example ,

Given , and .

The subsequences would then be every combination i.e. [0,1], [0,2], [0,3], [1,2], [1,3], [2,3]

This give rise to a complexity of

Question 3
An algorithm which included variable length don’t care character could be solved as follows:

To be able to do so, the algorithm would have to perform the following:

1. Construct an data structure to store the OverlapLength discussed in deliverable 1 for each substring that occur before

a variable length. Let us denote the substring as sj, where j = 1,2,…,k., the k substring contained in S

Example:

51

ab * c * aa would result in substrings [ab, c, aa], k = 3 and such each would have its OverlapLength data structure

created.

2. Use algorithm discussed in Deliverable 1 that uses the OverlapLength, but with the following optimization, whenever

substring sj is fully matched, proceed matching substring sj+1 using OverlapLengthj+1. .

Time-complexity
The algorithm would cost the following:

Time to construct the OverlapLength for each substring +

Question 4
Given two string of equal length n, and a query the computes the LCP of two strings in constant time, an algorithms to compute the

Hamming Distance (i..e number of mismatch between the two strings could be performed as follows)

1. Compute the LCP between the two strings T and S.

2. If the LCP is zero then no matches were found return length of T, denoting no match.

3. If the LCP is nonzero = j, then it must mean that j + 1 character did not match, hence proceed to Step 1 again using T[j+1...n]

and S[j+1..n]. Also note that 1 character was a mismatch.

The algoritm below would therefore compute the HammingDistance.

HammingDistance (T, S)

 j LCP(T, S)

 if j = 0 return length(T)

 return HammingDistance(T[j + 1..n], S[j+1..n]) + 1

Time-complexity
Step 1 in the algoritm would always cost constant time.

Step 2 would cost time to compute the length of the substring T. This can only occur once during the entire computation. Worst case

would be

Step 3 would cost constant time * match worst-case for this would O(n/2) assuming every second character is a mismatch.

Hence the time complexity is upper-bound by

Chapter 13 Deliverable 3

Question 1
Design a dynamic programming algorithm to compute the edit distance between S and

T.

52

Solution
The following algorithm converts a string S into a string T using the following

operations (Delete, Insert, Replace, and Match). To do so, an (m + 1) × (n + 1)

array is constructed and initialized with values 0..n horizontally and 0..m

vertically (see first row and first column below). The horizontal initialization

represents the deletion operation required to convert VINTNER string to an empty

string.

 To String

 -

From
String

- 0

W 1

R 2

I 3

T 4

E 5

R 6

S 7

The vertical initialization represents the insertion operation required to convert

the string WRITERS into an empty string.

 ToString

 - V I N T N E R

FromString - 0 1 2 3 4 5 6 7

To fill the remaining m×n cells the immediate top, diagonal, and left cells must be

computed. The value filled is the based on cheapest operation possible. Choosing

the top value would represent a Deletion, the Left an Insertion, and the Diagonal

would either represent a Match (if the character incident to the cell are the

same), or it would represent a Replace operation. The cost for each operation is 1

except for the Match which is 0.

The eventual table is shown below. The cell A[m,n] represents the optimal cost of

converting the entire From String to the ToString which is the value we seek to

find.

 To String

 - V I N T N E R Delete
Direction From

String
- 0 1 2 3 4 5 6 7

W 1 1 2 3 4 5 6 7

R 2 2 2 3 4 5 6 6

53

I 3 3 2 3 4 5 6 7

T 4 4 3 3 3 4 5 6

E 5 5 4 4 4 4 4 5

R 6 6 5 5 5 5 5 4

S 7 7 6 6 6 6 6 5

 Insert Direction Match/Replace
Direction

Edit-Distance(X,Y)

 Array[0..m,0..n]

 Initialize A[i,0] = i for each i

 Initialize A[0,j] = j for each j

 for j = 1,...,n

 for i = 1,...,m

 A[i,j] = min(A[i-1,j] + 1, A[i,j-1] + 1, A[i-1,j-1] + Compare(X[i],Y[j]))

 return A[m,n]

where

Min(a,b,c) = a if a > b and a > c

 b if b > c

 c otherwise

Compare[a,b] = 0 if a = b

 1 if a <> b

Correctness

Correctness proof is similar to the one in Algorithm Design Chapter 6 (Sequence

Alignment) Kleinberg/Tardos

Space Complexity

The algorithm needs to compute (m + 1) * (n + 1) entries hence the space

requirement is O(mn). The entry of interest is the A[m,n] hence the algorithm can

do without having to store all the values. When entering the jth row, the values

required are the j-1th row and the current row.

Below is a visual illustration of the cell value required to be kept a various

states of the algorithm. The shaded parts are parts that need to be kept.

 Computing

this cell

 Computing

this cell

Hence the amount of space can actually be optimised to m + 1 = O(m)

Time Complexity

Initialization of the array would cost O(m + n)

54

The two nested loops would cost O(mn)

The functions Min(a,b) and Compare(a,b) cost constant time.

Hence the total cost would be O(m + n) + O(mn) = O(mn)

Question 2
Suppose that the edit distance between S and T is at most a small number k < n,m

that is given as part of input. Use this to improve your algorithm from the

previous exercise such that the running time depends on k.

Solution
Continuing from the discussion, from question 1, the table of value represent the

optimal cost of from converting an empty string to an empty string see cell (0,0)

to convert string WRITERS to VINTNER see cell (7,7). Traversing from one end of

the diagonal to the other diagonal is the cheapest path. But when the strings are

not the same this is not the case. Deviating from the diagonal costs an INSERT or

DELETE operation.

If it is known that there a no more than k operations, then there cannot exist more

than k consecutive DELETE or INSERT operations from the diagonal at any given row.

This observation allows us to discard computing cells that are more than a distance

k from the diagonal.

The algorithm below implements that observation.

Edit-Distance(X,Y,k)

 Array[0..m,0..n]

 Initialize A[i,0] = i for each i to k

 Initialize A[0,j] = j for each j to k

 diagPosition = 0

 width = 2 * k

 nextRowStartIndex = 1

 for j = 1,...,n

 diagPosition = diagPosition + 1

 fromIndex = diagPosition – width

 if fromIndex < 0

 fromIndex = 1

 toIndex = diagPosition + width

 if toIndex > m

 fromIndex = m

 for i = fromIndex,...,toIndex

 topValue = A[i-1,j]

 topDiagValue = A[i-1,j-1]

 leftValue = A[i,j-1]

 if (topValue == 0)

 topValue = topDiagValue + 10

 if (leftValue == 0)

 leftValue = topDiagValue + 10

 A[i,j] = min(topValue + 1, leftValue + 1, topDiagValue + Compare(X[i],Y[j]))

55

 return A[m,n]

where

Min(a,b,c) = a if a > b and a > c

 b if b > c

 c otherwise

Compare[a,b] = 0 if a = b

 1 if a <> b

Time Complexity

We therefore need to compute the initialization k postions verital and horizontal

O(k + k) = O(2k) = O(k)

In the main algorithm we need to computes 2k + 1 (k distance on each side of the

diagonal plus the diagonal itself for m rows. O(2km + 2m) = O(km+ m)

Hence the time complexity = O(k) + O(km + m) = O(k + km + m)

Question 3
Suppose that the edit distance between S and T is at most a small number k, but we

do not know what k is. Design an algorithm for this problem. The running time

should also depend on k.

Solution

If we k is unknown the following can be done. We first assume k = 0, and compute

Edit_Distance. If the value of cell A[m,n] = 0 then we stop otherwise we continue

incrementing k until A[m,n] <= k. The algorithm below implements this strategy.

Edit_Distance_2(S, T, tryK = 0)

{

 result = EditDistance(S, T, tryK)

 if result > tryK

 Edit_Distance_2(S, T, tryK = 0)

 return result

}

Time Complexity:

Time complexity would vary depending on how k is actually is. But with k small, the

repetitions would be more efficient that computing the entire table.

Question 4
How quickly can you compute the edit distance between S and T if you have n

processors which can read and write in the table simultaneously? Give a fast

algorithm for this problem.

Solution

56

Each processor can be attached to a row. Such that once the row above has computed

it cells value, the row just below can also compute its cell value. This will

result into parallel computation. Hence there would be n + 1 processor. Processor 1

for the 0th row, processor 2 for the 1st row,…, processor n + 1 for the n+1th row.

The time complexity will therefore be O(m + 1) = O(m), assuming initialization also

the responsibility of the respective processor.

Question 5
The local edit distance problem is to find a substring S[i..j] of S that minimizes

the edit distance between any substring of S and T. Give an O(nm) time algorithm

for this problem. Hint the modify the initial conditions for the dynamic program

from exercise 1.

Solution
You can construct such a data structure using an array of size m integers.

Question 6
Given an error threshold k the search and replace problem with errors (SRE-problem)

is defined as the SR problem except that S matches at position i in T if i is the

endpoint of a substring of T whose edit distance to S is at most k. Note that there

might be more than one substring of T ending at position I and therefore we require

that the shortest of these substrings are replaced.

Solution

57

Chapter 15 Bibliography
Kleinberg, J., & Tardos, E. (2006). Algorithm Design. Pearson Education, Inc.

Chapter 16 Table of Equation and Algorithms
Equation 2-1 ... 5
Equation 3-1 ... 5
Equation 4-1 ... 5
Equation 5-1 ... 6
Equation 6-1 ... 7
Equation 6-2 ... 7

Algorithm 5-1 .. 6
Algorithm 6-1 .. 8
Algorithm 8-1 .. 12
Algorithm 8-2 .. 16
Algorithm 8-3 .. 19
Algorithm 6-1 .. 22
Algorithm 8-4 .. 25

file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828507
file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828508
file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828509
file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828510
file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828511
file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828512
file:///C:\Documents%20and%20Settings\enkya\My%20Documents\NEWFROMDESKTOP13122007\Large%20Integer%20Multiplication%20-%20Dodoma%20Algorithm%20-%20Advanced%20Algorithms%20Project%20-%20enkya.docx%23_Toc185828513

