Artificial Neural Networks

A simplified mathematical notation and its
implementation

Elly Nkya
4/14/2009

Today, there exists numerous literature that describe the artificial neural network. However, the notation
used is usually difficult for beginners. In this document, a recurrence notation is proposed that fully

describes an artificial neural networks roll-up and back-propagation algorithms. Finally, an implementation
of an artificial neural network is presented.

Table of Contents

Chapter 1. Artificial NeUral NETWOIKS ...cciiiiiiie ettt e s s bae e e s ae e e e ssnaee s 3
Chapter 2. Roll-up of an Artificial Neural NEtWOIKcc.eeiieiiiiiiiiiieccceee e 5
Chapter 3. Back-propagation of an Artificial Neural NEtWOrkccoocciieiiiiiieiecieee e 6
Chapter 4. Implementation of an Artificial Neural NetWork.........cccceeecciiiiiiiiee e 7
C1aSS NEUFAINEIWOTK ..ottt sttt et et e s bt e s bt e sae e st e e bt e beenbeesbeesaeesaseenseens 8
(0 F T Y21] L= PRSP 11
Class NEUTaINETWOIKNOGEcccuiiiiiieiiiie ettt ettt et e st e e be e e sab e e sabeeesabeesabeeeneeesabeeennneenns 12
21T o Lo} =4 =T o] o1V 2SR 13

Chapter 1. Artificial Neural Networks
An artificial neural network consists of neurons (nodes) that are interconnected by directed edges
that carry a weight. The neurons are grouped in layers. Typically each successive layer of neurons
is connected by edges from the previous layer. The first layer is commonly known as the input
layer, the last layer is known as the output layer, whilst the intermediate layers are known as the
hidden layers. Except for the output layer, a special neuron known as the bias is contained in each
layer. These bias neurons output a constant value usually 1 or -1.

Neural networks form a mathematical mapping of the form

fG) =y

where,

X = (x1,%y,...,xy)T are the input signals vector accepted through the input layer
which contains N nodes, each node accepts a value x; and,

y = (y1,¥2, ., Ym)" are output signals that are output through the output layer
containing M nodes, each node represent a value ;.

The mapping f, is performed by rippling the inputs through the network using the directed edges
and strengthening them by their weights, until they arrive at the output nodes. Each neuron
performs an activation of it inputs before it outputs a value. This mapping to the output layer is
commonly known as a roll-up.

Before a neural network can perform a correct mapping of output, it is essential that the correct
weights are computed on each of its directed edges. This achieved by training using a method
commonly known as back-propagation.

The example figure below shows the essential features of an artificial neural network.

y=f&@ »

LayerO Layer 1 Layer 2

The diagram demonstrates the essential features of a neural network.

The oval shapes represent the neurons. These are grouped in layer 0, 1, and 2. Hence the network
above is called a 2-layer neural network.

Layer 0 accepts the input x". This input is rippled through the network by way of the directed
edges represented as arrows. These edges carry weight. Values are eventually output on layer 2 as
.

The dotted ovals represent the bias neurons.

Note also that the neuron are number for reference purposes as:

Layer 0 (0,0), (0,1),(0,2),(0,3),(0,4)

Layer 1 (1,0), (1,1), (1,2), (1,3)

Layer 2 (2,1), (2,2)

Hence the weights of edges can also be referenced. For example weight from neuron (0,1) to
neuron (1,3) is expressed as weight([0,1],[1,3]).

Chapter 2. Roll-up of an Artificial Neural Network
Roll-up, the actual functional mapping of the input signal to produce an output signal, is the
central feature of a neural network. In this section we will show how this can be expressed using a
piece-wise and recurrence relation.

Suppose we concentrate on the value of what each neural node is supposed to output. We will
denote the output of any node as, activate(x,1,1), where:

X, is the input vector that is accepted at the input layer.
1, is the layer.
i, is the node position in a layer.

We therefore observe there are three special cases that can describe the output value of any node
in an artificial neural network.

1. Output of a Bias Node
At the Bias Node the output is always a constant value. Hence can be expressed as,

activate(x,1,0) = —1

2. Output of an Input Node
At the Input Node, the output is the value of the input vector itself. Hence this can
expressed as,

activate(x,0,i) = x[i]

3. Output of all other Nodes
All other nodes rely on the interconnection of the immediate preceding layer nodes that
are connected to them by way of the directed edges. The output of these nodes, can be
expressed as an activation by a function g, whose input is the sum of the product between
the weight of edge directed into it and the signal of the activation of the neural node these
weighted edges originate from. In a more mathematical expression, this can be expressed
in recurrence form as follows:

n

activate(x,l,i) = g Z activate(x,l — 1,)w([l — 1,51, [1,i])
=0

All three cases can now be combined using a piece-wise function and expressed as follows:

n
g z activate(x,l — 1,)w([l — 1,j,[,,i]) | i,l>0
activate(x,l,i) = =0
-1 i=0
x[i] =0

Chapter 3. Back-propagation of an Artificial Neural Network
As mentioned in the first chapter, an Artificial Neural Network can be made to perform a mathematical
mapping of the form,

f&x)-y
Of which X, is the input vector and ¥, is the desired output.

However for it to produces correct outputs, given any set of inputs, Artificial Neural Networks
must be trained. Training involves adjusting the weights of the directed edges until the network
performs mapping accurately even for a majority input it has not yet encountered.

One commonly used tactic applied to adjust the weights, is to perform what is known as a back-
propagation of the network. That is, given a known pair of desired input-output values {x, ¥},
weights are adjusted, starting with those linking the output layer, and moving towards the
direction of those linking the input layer.

Each weight is then updated using the formula:
w(ll=1LjL[LiD =w(ll - 1jL[LiD + axactivate(x,l — 1,/))A(%, 1, i)
Whereby for the weights connected to the outer lay
Alx, 1i) = g'(activate(a?, I, i))(y[i] — activate(x, 1, i))
And for all other weights,
n
AGE L) = g (activate(%, 1, 1)) Z AG L+ 1,)w(lL il [+ 1,71
j=0
The two preceding formulas can then be combined using the following piece-wise function as:

(g (activate(x,1,1))(y[i] — activate(x, 1, 1)) L is an outer layer)
n

A _I lJ [) = ! — —
&L g (activate(x, I, i)) Z ACx, L+ 1,)w([Li],[L+1,j) Llisahidden layer

\ =)

NOTE: g is the gradient function of the function g

Chapter 4. Implementation of an Artificial Neural Network
In this section, we will present an implementation of an Artificial Neural Network. Along with it,
implementation of the networks, Roll-up and Back-propagation accompany it. The implementation
made use of the descriptions made in the earlier chapters.

With this implementation you can perform the following

e Instantiation of the Neural Network class and initialization

Example:
NeuralNetwork neuralNetwork = new NeuralNetwork("11,9,4");

Using the example above, a 2-layer Neural Network is created with
o 11 input nodes in the input layer,
o 9 nodein the hidden layer and,
o 4 output nodes.
e Roll-up of the network

Example:

Example inputVector = new Example (11);
inputVector.Attributes[1] = ...;
inputVector.Attributes[2] = ...;
inputVector.Attributes[11] = ...;

List<Example> rollupResult = neuralNetwork.RollupNetwork(eqg);
e Update the network using Back-propagation

Example:
Double outputVector, sqgOfWeightChange;

Example outputVector = new Example (4);

outputVector.Attributes[1l] = ...;
outputVector.Attributes[2] = ...;
outputVector.Attributes[4] = ...;

neuralNetworkOffLine.BackPropagateNetwork (
inputVector, outputVector, ref error, ref sqOfWeightChange);

Class NeuralNetwork

class NeuralNetwork
{
public List<List<NeuralNetworkNode>> network =
new List<List<NeuralNetworkNode>> () ;
private static Double temperature = 2;

public static void SetTemperature (double newTemperature)
{
temperature = newTemperature;

}

public NeuralNetwork (String layerNodes)
{
String[] layerNodesArray = layerNodes.Split(',"');
for (Int32 layer = 1; layer < layerNodesArray.Length; layer++)
{
List<NeuralNetworkNode> layerNetwork =
new List<NeuralNetworkNode> () ;
for (int numOfWeights = 0;
numOfWeights <= Convert.ToInt32 (layerNodesArray[layer]);
numOfWeights++)
layerNetwork.Add (
new NeuralNetworkNode ((numOfWeights == 0 2 0
Convert.ToInt32 (
layerNodesArrayl[layer - 1])),
1.0,
layer == layerNodesArray.Length - 1));

network.Add (layerNetwork) ;
}

public List<Example> RollupNetwork (Example eg)
{
Int32 outerlayer = network.Count - 1;
Int32 nodesInOuterlayer = network[outerlayer].Count;

List<Example> nodeActivationResults = new List<Example>();

nodeActivationResults.Add (new Example (eg.attributes.Length - 1));

for (Int32 i = 0; 1 < network.Count; i++)
nodeActivationResults.Add (new Example (network[i].Count - 1));

for (Int32 i = 1; i < nodesInOuterlayer; i++)
{
ActivateNetworkNode (ref nodeActivationResults, eg,
outerlayer + 1, 1i);
}
return nodeActivationResults;

}

public void BackPropagateNetwork (
Example eg, Example expectedResult,

ref double totalError,
ref double newSgOfWeightChange)

List<Example> rollupResult = RollupNetwork (eq);
List<Example> networkErrorResult =
ComputeNetworkError (ref totalError,
rollupResult, expectedResult);

UpdateNetwork (rollupResult, networkErrorResult,
ref newSgOfWeightChange) ;

private Double ActivateNetworkNode (
ref List<Example> nodeActivationResults,
Example eg, Int32 layer, Int32 node)

if (nodeActivationResults[layer].isComputed[node])
return nodeActivationResults[layer].attributes[node];

nodeActivationResults[layer].attributes[node] =
ComputeActivation (ref nodeActivationResults, eg, layer, node);

nodeActivationResults[layer].isComputed[node] = true;

return nodeActivationResults[layer].attributes[node];

private Double ComputeActivation (
ref List<Example> nodeActivationResults,
Example eg, Int32 layer, Int32 node)

if (node == 0)
return -1;
if (layer == 0)

return eg.attributes[node];
Double inputValue = 0;

for (Int32 j = 0;
j < network[layer - 1] [node].weights.Length;
J++)

inputValue +=
ActivateNetworkNode (
ref nodeActivationResults, eg, layer - 1, j) *
network[layer - 1] [node].getWeight (j)
}
return NeuralNetworkNode.ComputeTagentHyperbolicActivation (
inputValue) ;

public List<Example> ComputeNetworkError (
ref Double totalError,
List<Example> actualResult,
Example expectedResult)

Int32 firstHiddenLayer = 0;
Int32 nodesInFirstHiddenlayer = network[firstHiddenLayer].Count;

List<Example> errorLayerResultValues = new List<Example>();
for (Int32 i = 0; 1 < network.Count; i++)

errorLayerResultValues.Add (new Example (network[i].Count - 1));

// the outer level does not have a bias node. So start with 1.

for (Int32 i = 1; i < nodesInFirstHiddenlayer; i++)

{

ComputeNetworkNodeErrors (

ref totalError,
ref errorlLayerResultValues, actualResult, expectedResult,
firstHiddenLayer + 1, 1i);

}

return errorlLayerResultValues;

private Double ComputeNetworkNodeErrors (
ref Double totalError,
ref List<Example> errLayerResultValues,
List<Example> actualResult,
Example expectedResult,
Int32 layer, Int32 node)

if (errLayerResultValues|[layer - 1].isComputed[node])
return errlLayerResultValues[layer - 1].attributes[node];
return ComputeErrorSum (
ref totalError, ref errlayerResultValues,
actualResult, expectedResult, layer, node);

}

private Double ComputeErrorSum (
ref Double totalError,
ref List<Example> errLayerResultValues,
List<Example> actualResult, Example expectedResult,
Int32 layer, Int32 node)

Double err = 0.0;
Boolean isOuterlLayer = layer == network.Count;

if (isOuterLayer)
{
err = expectedResult.attributes[node] -
actualResult[layer].attributes[node];
totalError += err * err;
}
else

{

for (Int32 j
{
err +=
ComputeNetworkNodeErrors (
ref totalError, ref errlayerResultValues,
actualResult, expectedResult, layer + 1, j) *
network[layer] [j] .getWeight (node) ;

1; j < network[layer].Count; J++)

errLayerResultValues[layer - 1].attributes[node]
Gradient (actualResult[layer].attributes[node]) err;

errLayerResultValues[layer - 1].isComputed[node] = true;

return errlayerResultValues[layer - 1].attributes[node];

10

Class Example

class Example

{
public double[] attributes;
public double likelyHood = 0;
public Boolean[] isComputed;

public Example (int noOfAttributes)

{
attributes = new double[noOfAttributes + 1];
isComputed = new bool[noOfAttributes + 1];
attributes([0] = -1.0;

}

public double[] GetAttributes/()
{

return attributes;

}

public int numOfNodes ()

{
return attributes.Length - 1;

}

11

Class NeuralNetworkNode

class NeuralNetworkNode
{
public double[] weights;
Double bias = 0;
private static Random randomWeight = new Random() ;

public NeuralNetworkNode (
int noOfweights, double bias, bool initializeWeights)
{
weights = new double[noOfweights + 1];
setBias (bias) ;
if (initializeWeights)
for (int 1 = 1; i <= noOfweights; i++)
{
weights[i] = randomWeight.NextDouble () - 0.5;
}
}

public Double getBias /()
{

return bias;

}

public void setBias (Double newValue)

{
bias = newValue;
weights[0] = newValue;

}
public Double getWeight (Int32 7)

{

return weights[]j];

}

public void setWeight (int j, Double newValue)
{

weights[j] = newValue;

}

public static Double ComputeTagentHyperbolicActivation (Double input)
{

Double pos2X = Math.Exp (2 * input);

Double result = (pos2X - 1) / (pos2X + 1);

return (result);

12

Bibliography
Bishop, C. M. (2007). Neural Networks for Pattern Recognition. Oxford.

Bishop, C. M. (2006). Pattern recognition and Machine Learning. Springer.
Kleinberg, J., & Tardos, E. (2006). Algorithm Design. Addison Wesley.
Russel, S., & Norvig, P. (2003). Artificial Intelligence A Modern Approach. Prentice Hall.

NKkya, E. O. (2008). Implementing Realistic Human Motion in Games.

13

