

2008

Elly Onesmo Nkya

ITU University of Copenhagen

Supervisor: Rune Møller Jensen

Msc. Thesis in Multimedia and Games

6/2/2008

Implementing Realistic Human

Motion in Games

2

Table of Contents

List of figures ... 5

Abstract .. 7

Acknowledgements .. 8

Chapter 1. Introduction .. 9

1.1 Realism in games ... 9

1.2 Realistic human motion in current games ... 10

1.3 Motion in the real world .. 11

1.4 Advantages of including realistic motion in games ... 11

1.5 Thesis question .. 12

1.6 Choice of environment to study realistic motion... 13

1.7 Scope ... 13

1.8 Thesis contributions ... 14

1.9 Structure of this thesis ... 14

Chapter 2. Background .. 15

2.1 Modeling the game .. 16

2.2 Producing motion .. 17

2.2.1 Force and motion .. 17

2.2.2 Energy storage and usage ... 17

2.2.3 Aerobic respiration ... 20

2.3 Decision making .. 21

2.3.1 Q-learning ... 22

2.3.2 Artificial neural networks ... 24

2.3.3 Roll-up of a neural network ... 26

2.3.4 Learning using backpropagation .. 27

Chapter 3. A game motion agent combining Q-learning and neural networks 29

3.1 Modeling the athletic competition for realistic motion ... 30

3

3.1.1 Initialization ... 30

3.1.2 Episode ... 30

3.1.3 Game loop .. 30

3.2 Modeling actuators for realistic motion ... 32

3.2.1 Breathing .. 32

3.2.2 Rigid body motion .. 33

3.2.3 Energy conversion .. 34

3.2.4 Motion actuation .. 37

3.3 Modeling sensation and perception for realistic motion ... 38

3.3.1 The competition .. 38

3.3.2 Ego ... 40

3.3.3 Fatigue .. 41

3.3.4 Implementing a sensation & perception ... 41

3.4 Modeling acceleration decision making for realistic motion 44

3.4.1 Learning in the absence of prior domain knowledge ... 45

3.4.2 Defining rewards percept for an athletic competition .. 46

3.4.3 Acquiring prior domain knowledge ... 48

3.4.4 Implementing the critic for performance measure ... 52

3.4.5 Using experience to predict behavior for a larger state space 55

3.4.6 Using neural networks to represent Q-learning .. 56

3.4.7 Achieving generalization using a neural network .. 61

Chapter 4. Empirical results ... 64

4.1 Overview of the actual athletic implementation used for the thesis 64

4.2 Fuzzy Logic Rule Based Agent ... 66

4.2.1 Fuzzy Logic computation time in Game Loop ... 66

4.2.2 Motion and its effect on key attribute .. 66

4.3 Q-Learning ... 68

4

4.3.1 Convergence rate of Q-Learning .. 69

4.3.2 Motion and its effect on key attributes ... 69

4.4 Combined Model ... 71

4.4.1 Convergence rate of Q-Learning neural network ... 71

4.4.2 Performance of generalizing .. 71

Chapter 5. Discussion .. 71

5.1 Experiment on the fuzzy rule based agent ... 72

5.2 Experiments on the Q-learning agent .. 72

5.3 Experiments on the combined Q-learning and neural network agent 72

Chapter 6. Conclusion .. 73

6.1 Summary of what was achieved .. 73

6.2 Contributions of this thesis .. 73

6.3 Insights on future work .. 74

Chapter 7. Bibliography ... 75

5

List of figures

Table 2.1-1: The Game Algorithm ... 17

Table 2.2-1: Muscles energy sources conversion ... 20

Table 2.2-2: Aerobic respiration cycle ... 20

Table 2.3-1: The brains role in motion ... 21

Table 2.3-2: Q-learning agent-environment framework .. 23

Table 2.3-3: An acyclic, fully connected, feed forward multilayer neural network example .. 26

Table 3.1-1: The Athletics Competition Algorithm ... 31

Table 3.2-1: Runner.Breathe Algorithm .. 32

Table 3.2-2: Runner.Move Algorithm .. 34

Table 3.2-3: Runner.ProduceKineticEnergy Algorithm .. 35

Table 3.2-4: Runner.ProduceEnergy Algorithm .. 37

Table 3.2-5: Runner.AcuateMotion Algorithm .. 37

Table 3.3-1: Runner.PerceiveCompetitor Algorithm ... 40

Table 3.3-2: Runner.PerceiveEgo Algorithm ... 40

Table 3.3-3: Runner.PerceiveEgo Algorithm ... 41

Table 3.3-4: Runner.Sense Algorithm .. 42

Table 3.3-5: Runner motion percept values ... 43

Table 3.4-1: PEAS for an athletic competition .. 44

Table 3.4-2 Examples of rewards for runner .. 46

Table 3.4-3: Runner.Sense Algorithm .. 47

Table 3.4-4 AgentState.Qlearn Algorithm ... 49

Table 3.4-5 AgentState.BoltzmanAction Algorithm .. 50

Table 3.4-6 Runner.OfflineQLearnEpisodePerceptHistory Algorithm 51

Table 3.4-7: The Athletics Competition Algorithm ... 52

Table 3.4-8: The DecidePaceSettorAcceleration Algorithm .. 54

Table 3.4-9: The CrossValidate Algorithm .. 54

Table 3.4-10: The AthlecticPriorKnowledge Algorithm ... 55

Table 3.4-11: Space complexity for q-value lookup table as a function of distance to run 56

Table 3.4-12: Pre-processing motion percept input for neural networks 58

Table 3.4-13 2-layer neural network representing a Q-table ... 59

Table 3.4-14 NeuralNetwork.Rollup Algorithm .. 60

Table 3.4-15 AgentState.QLearn Algorithm .. 61

6

Table 3.4-16: The AthlecticPriorKnowledge Algorithm ... 63

Table 4.1-1: Runner settings in the actual implemenation ... 65

Table 4.2-1 Pacesetter motion attributes in a 300 meters athletic competition 68

Table 4.3-1 Q-learning motion attributes in a 300 meters athletic competition 70

Table 4.4-1 Impact of training strategy on the winning ratio vs. number of nodes in hidden

layers .. 71

Equation 2.2-1 The resultant force of motion .. 17

Equation 2.2-2 Energy conversion for motion ... 18

Equation 2.3-1 Q-value update for a non-deterministic MDP ... 23

Equation 2.3-2 Neuron activation function .. 25

Equation 2.3-3 Rollup activation function ... 27

Equation 2.3-4 Weight update in neural network learning .. 27

Equation 2.3-5 Backpropation error in neural network weight update 27

Equation 3.2-1 Oxygen available of muscles ... 32

Equation 3.4-1 Boltzmann Distribution for Softmax Action Selection 49

Equation 3.4-2 Backpropation error in neural network weight update 61

7

Abstract

The computer games industry is increasingly being pressured to create games that are

realistic, in the sense that rules that apply in the real physical world also do apply in computer

games. Human motion (i.e. running and walking) is one area that is prevalent in computer

games especially in genres such sports, action, and adventure. In real life, motion is a key

element for all living beings if they are to engage. It is primarily governed by thought and

actuated by muscles and their energy sources. Complex energy sources in muscles are used to

produce force, which in turn creates motion. Currently, most games ignore, cheat, or

implement rule-based logic to reflect the thought and muscle processes. In these cases, motion

is not realistic.

This thesis attempts to model realistic human motion governed by realistic energy constraints,

but can which realistically achieve long-term goals in a competitive real world environment.

An athletic event is used to construct a realistic competitive environment that allows us to

focus on the energy constraints and capture the motion dynamics. Q-learning, a reinforcement

learning method in machine learning, is then be used to model domain knowledge acquisition

necessary for the decision making processes that produce realistic behavior for motion.

Generalization of the behavior for larger environments using a combined Q-learning and

neural networks model is then discussed implemented and measured.

Based on the theoretical analysis and the empirical results from the construction of the athletic

event, this thesis concludes that a realistic model of the energy dynamics that control the way

we execute motion be realized and implemented whilst also allowing them to generalize due

to evidence the learning shows convergence. This model can then be used in computer games

to increase the realism in chase and evasion strategies.

8

Acknowledgements

I would like to thank my supervisor, Rune M. Jensen for providing insightful feedback during

the course of this work. Many of the methods and the material resources used to realize this

work were introduced to me by him.

To friends, thank you for bearing with me as I went on and on about runners and energy. To

Archard and Maureen, thanks for the review.

Rasa, thank you for all the care and tremendous patience while I worked on this thesis. To

Christian and Anna, thank you for being such good children. To my mum and dad, you have

been a constant source of encouragement.

9

Chapter 1. Introduction

"Games will become an immersive reality that mixes the game with the real world," Lambert

said. "As the technology develops, we will see games combining the intellectual aspects of

chess and the physical aspects of sports."

"A game should be an experience more intense than reality," Fan said. "For now, real life is

still more fun than games."

(Crampton, 2005)

The Game Industry has been growing at a double digit rate. 90% of U.S. households with

children have rented or owned a video or computer games, and young people in the United

State spend an average of 20 minutes per day playing video games, making digital games the

second most popular form of entertainment after TV. (Fullerton, Swain, & Hoffman, 2004)

1.1 Realism in games

With technological barriers being broken in hardware and multimedia capabilities, gamers

have come to expect and demand more richness in the gaming experience. Aspects of games

that were overlooked in the past are being called into question. Gamers now demand more

realism. Realism is the implementation of real world behavior into games. This includes the

mimicry of action and reaction of intelligence, sound, physics, lighting etc. Progress has been

made. The evolution of 3D animated computer graphics has helped characters appear life-like

(photorealistic). The evolution of higher sound quality has helped the gaming environment

sound life-like and has improved interactivity. The evolution of faster processors has resulted

in the development of engines that have helped the virtual world behave according to many

laws of physics. The evolution of network has meant improved multiplayer capabilities

enabling gamers to interact with intelligent beings virtually. However, these aspects have

allowed gamers to take a closer look at non-player characters. And it has not been a pretty

sight.

“In recent years the quality of graphics and sound has improved such that it is now easier to

discern nonsensical or questionable actions on the part of non-player characters.”

“Computer Games With intelligence” – Daniel Jonson and Janet Wiles 2001

Life-like behavior of living beings in games is lagging, especially the non-player characters.

AI could now be the dominant feature which makes a product stand out and become

10

competitive. Implementing realistic behavior is now gaining ground. It is present and

noticeable in some of the best selling games. The bar of what can be presented as life-like

behavior in games is therefore being raised.

1.2 Realistic human motion in current games

One aspect that remains unaddressed properly is realistic human motion.

Human motion is a basic part of many games. For the following genres it is essential.

 Action games: In this category are first-person shooter games which involve agent

moving around as in real combat. Chasing and evading is a key part of the strategy in the

game, under intense physical conditions of battle.

 Sports games: In this category lie games that simulate the experience of traditional

sports. This is also an extremely popular genre (and includes some of the best selling

games). Games include boxing, football, and rugby, which are physically demanding.

However, in all game genres little regard is given toward implementing motion as it appears

in reality. This is can attributed to the following reasons.

 Biochemical processes that manage motion are complicated and hence are not

implemented

 The thought process for motion is implemented using weak AI because of the assumed

intractability of the environment. These methods, typically a combination of fuzzy

logic and rule-based A.I. can cause problems. They can lead to poor behavior because

they either do not take into account all the percept information necessary for rational

behavior, or if they do, they compromise reliability of the program and make it hard to

maintain.

This results in several issues:

 During a chase or evasion during chase and evasion the only strategy seems to be

direction. There seems to be no other of strategy for an exit criteria or high order

intelligence.

 Acceleration in player characters appears non-existent. All characters appear to be

running at the same constant speed whether fresh from a chase or otherwise.

 Getting tired is almost non-existent even if a highly intense muscular activity has just

been performed. Chasing or evasion can continue infinitely unless it chooses to enter

11

one of those nonsensical trances of defeat. With the absence of constraints non-player

character and player characters expend their resources recklessly.

1.3 Motion in the real world

Motion or locomotion in human beings is an important aspect of everyday life. Walking,

running, jumping, crawling, climbing, and swimming are some of the types of motion one can

exhibit. The ability to perform motion effectively allows living beings to achieve their goals.

It involves aspects of physics, biology, chemistry, and decision-making to manage optimal

motion

In the real world, motion is achieved by exerting force using skeletal muscles on the limbs.

This exertion of force produces a resultant acceleration/deceleration. Force can only brought

about if there is enough chemical energy to be converted to kinetic energy. There are several

types of chemical energy sources. Each source has its own storage limits. Conversion rates to

kinetic energy depend on the energy store and on the type of chemical reaction (aerobically or

anaerobically) necessary for conversion. Aerobic respiration, which sustains longer intense

motion, is also more effective when the human is moving slower.

Therefore, to maximize the outcome of a motion activity, humans must balance acceleration

with this complex energy production. Given enough experiences they can optimize the right

balance between the two. The thought processes is therefore important in achieving optimal

results.

1.4 Advantages of including realistic motion in games

There are several advantages that will be achieved from implementing realistic human motion

in games.

 Engages players to be more strategic with their resources

Take tennis for example: making your opponent run around the court is part of the

strategy of tiring him.

 Encourages cooperation in multiplayer games

Passing the ball around in football is a key strategy in keeping players from getting

tired instead of going at it alone no matter how good you are.

 Potential for opening up possibilities for more physical endurance games

12

Many physical endurance sports are yet to be implemented or are unsuccessful. The

addition of this key element may spark more interest in having athletic running events,

rugby, tennis etc.

 Improves the perception of life-like behavior in non-player human characters

 Can act as a simulation to be applied to endurance sports training

 Strong A.I. can end-up creating non-player characters that do not need to resort to

cheating in order to compensate for their incompetence. Fairness can is a key

component of game play. It also may open the possibility of non-player having the

capability to adapt to the competition and hence make the game more engaging.

 The cost of maintaining the system is minimized if strong A.I. methods are used to

mimic behavior. This is because of their resilience to error. Developers therefore do

not need time bug fixing their way to realistic behavior.

1.5 Thesis question

In this thesis, we will attempt to model realistic human motion by incorporating all the basic

real-world dynamics that underlie human motion. This will include modeling of the muscles

energy sources, respiration, and conversion of the chemical energy to kinetic energy. The

effects of the forces that result from the kinetic energy production will also be discussed.

Realistic perception and sensation, which plays a key part in how humans acquire relevant

information about state of the environment to which the task of motion is required, will also,

be modeled.

Decision-making plays a key role, if a human is to achieve a goal that requires motion. Today,

no domain theory exists on how the brain makes decisions on what force the muscles need to

produce for motion, given the complex energy sources. But we do see that the brain does

make choices that are rational and is capable of achieving long-term goals requiring motion

optimally. Machine learning methods are the closest we get to mimicking realistic human

intelligence, among them reinforcement learning is capable of producing domain knowledge

through experience. However, it cannot support dynamic environments with large state-

spaces. Artificial neural networks, are capable of generalizing domain knowledge once it is

known, by expressing it in a compact form that can support environment such as those for

motion. The question for this thesis then becomes:

“Is it possible to create realistic motion for human characters in games, based on a realistic

energy models using a combined model of reinforcement learning and neural networks?”

13

1.6 Choice of environment to study realistic motion

To explore the domain of motion in humans we need also choose a “real-life” environment

that allows us to focus on the problem. Normal everyday life environments are too

complicated to use for learning motion, due the physical configurations, and many secondary

goals involved.

Athletics is a competition of human physical abilities. These events are usually held in well

defined environments governed by simple rules that allow the athletic abilities to the central

focus. The relative simplicity makes it possible for us to focus strongly on learning human

motion. We will focus especially on the running events of athletics.

1.7 Scope

There are numerous factors that impact motion. In this thesis we will focus on key factors,

These will be include, muscles energy sources, chemical energy conversion, respiration, the

competition, the actual force that produces movement expressed as velocity and position.

Sensation and perception of these is also important for realistic decision making. Memory or

prior knowledge plays a big role if agents are to learn from their experiences, which is

typically of human behavior.

There are also several other factors which will not be addressed in this work. To limit the

complexity, we will assume negligible effect on these aspects. They include both internal and

external factors.

Internal factors: are those emanating from the human himself. Limb movement can be

effective in optimizing the energy sources and reducing stress to the muscles. Posture can also

reduce the effect of weight. Diet is known to also control weight, contribute to energy

sources, and contribute to heath that is vital to the development of organs used in running.

Exercise and practice also contribute in appropriate muscle growth, development of the lungs

for oxygen intake, and better running strategy.

External factors: are those factors that emanate from the environment: Wind depending on the

direction can inhibit or assist motion. Humidity can cause the runner to spend too much

energy ridding the body of heat. Altitude contributes to pressure change that adds to another

force against motion.

14

1.8 Thesis contributions

The contributions of this thesis are twofold:

1. It proposes a solution concept that can be used to model realistic on human games

characters based on realistic sensation and perception, realistic energy sources,

realistic movement, and decision-making processes mimicking rational thought.

2. Implements and evaluates the performance of such a model based on an athletic

competition and presents workarounds, shortcoming, and ideas for further

improvements.

1.9 Structure of this thesis

The remainder of the report is organized as follows. In chapter 2, we will introduce the

background of the key concepts, which we will build this thesis upon. We will begin by an

introduction to current game architecture and its basic parts. This will provide the context of

the design constraints to which we model motion upon. This chapter will continue with an

introduction on the physical and chemical aspects that brings about real-life motion, including

the energy sources, respiration, breathing, and actual movement. An introduction on how

decision-making processes necessary for motion will be presented and we will by introducing

Q-learning and neural network. These methods of machine learning will later be used to

mimic human motion decision-making processes.

In chapter 3, we then address the question. We will start off by modeling a realistic athletic

competition into the game architecture. Following that, we will model realistic motion

actuation which captures breathing, energy conversion, and kinematics. Models for sensation

and perception for realistic human will then be realized. This will also help in identifying the

characteristics of the environment in A.I. terms, which we later use for modeling decision-

making. The final part of this chapter will then address the modeling of realistic decision

making processes for human motion. A combined model of Q-learning and neural network

will be proposed and argued for.

In chapter 4, the empirical results will then be presented and discussed, focusing on key

characteristics that address the thesis question.

In chapter 5, we will conclude our findings by providing a summary of what was achieved,

the contributions of this thesis, and insights on future work that can address shortcomings that

were identified during the course of this work.

15

Chapter 2. Background

Before we move on to describing how we can model realistic human motion, we will

introduce several fundamental concepts that are the building block for this thesis.

In this chapter will begin by introducing the architecture of a typical modern game. We will

focus mainly on the game logic framework. We do this because the modeling of human

motion will be constrained under current architecture of game development.

The mechanisms that bring about real human motion will then be introduced. This includes

energy conversion in muscles, breathing, and kinematics. This is a broad subject involving a

lot of complexity and unknowns. Hence the description will only focus on aspects that are

necessary to solve the thesis problem. This may also include the authors’ assumptions in gray

areas.

A brief introduction on athletics will be made as we will base the game environment on an

athletic event. Key aspects of the competition and its rules will be introduced.

Decision making forms the central part of this thesis; hence the later sections will briefly

introduce realistic thought processes. AI methods, specifically Q-learning and Neural

network, which are used to model learning, thought and decision making, will then be

introduced.

16

2.1 Modeling the game

Computer games architecture usually features three basic parts:

 Initialization: deals with the loading of the game graphics, initialization of the game

settings. Games setting usually consist of the default settings, game rules, domain

knowledge, location of game graphics etc. Of key interest to our thesis, the

environment and agents involved are primarily loaded here as well. Lines 6-7 on the

algorithm presented below describe this.

 Game Episode

This is the central part of the game. It manages the game plays until the criteria for

ending is encountered (Line 15). The episode includes a game loop which is an

important part in handling animations in dynamic environment where refresh of the

graphics is important. Lines 9-16 of the algorithm represent the game episode.

Another use for it is in managing the agents that interact with the environment. Agent

behavior can be divided in three parts, sensing the environment, decision-making, and

actuating on the environment.

 Finalization

This is the final part of the game. It may include release of memory, saving updated

games setting, and the presentation of results. See Line 16-17.

The following algorithm presents an overview of the Game Episode algorithm.

1 function GameEpisode(gameSettings)

2 inputs: gameSettings contain the default settings of the game including the

 domain knowledge, graphic inputs, and game rules

3 local variables: environment,

4 agents, who will be competing in the game

5

6 InitialiseGame

7 environment ← InitializeEnvironment(gameSettings)

8 agents ←InitializeAgents(gameSettings)

9 GameEpisode

10 repeat

11 foreach a in agents

12 percept ← Sense(a, environment)

13 actions ← Decide(a, percept, [domainKnowledge])

17

14 environment ← Act(a, actions, environment)

15 until GameEpisodeStoppingCriteria(environment)

16 FinalizeGame

17 PresentResult(agents)

Table 2.1-1: The Game Algorithm

2.2 Producing motion

The movement of the center-of-mass is what is termed as motion. Motion is achieved by

sophisticated skeletal muscle contractions and dilations on the limbs. These muscles

movements cause the limbs to rotate about the joints.

2.2.1 Force and motion

The limb movements cause the feet to exert a force against the ground that causes the body to

move forwards. Force consist of a magnitude and direction, and are expressed as vectors.

Friction and atmospheric drag work against this force created by the muscles. Motion occurs

when the muscles force exceeds that of the opposing forces, the center-of-mass of the human

body shifts from one position to another. The relation between the forces can be represented

by the following relation,

𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐹𝑚𝑢𝑠 𝑐𝑙𝑒𝑠 − 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

Equation 2.2-1 The resultant force of motion

Where

𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠 is the force vector produced by the muscles,

𝐹𝑑𝑟𝑎𝑔 is the opposing force vector caused by the atmosphere due to the resistance of

air. (Drag (physics)) describes on the underlying nature of this force,

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is the opposing force vector between brough about as result of the contact

between ground and the feet. (Friction) describes the nature of this force.

2.2.2 Energy storage and usage

Muscle activity requires energy. To produce energy destructive metabolism commonly known

as catabolism should occur. Catabolism is the process that produces energy required for all

activity in cells. In this process, large molecules cells (mostly carbohydrates or fat) break

down to release chemical energy. This energy release provides for among other things, kinetic

energy used to produce motion through muscles contraction. During this conversion, some

18

energy is lost as heat due to chemical activity and friction. In fact, only a ¼ of the energy is

turned into useful power (Body Atlas, 2006). Waste (heat and carbon dioxide) by products of

energy production is released into the blood which flows back to the heart. The conservation

of energy can be used to describe the relation between the energy as:

𝐸𝑐𝑒𝑚𝑖𝑐𝑎𝑙 → 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝐸𝑒𝑎𝑡

Equation 2.2-2 Energy conversion for motion

Where,

𝐸𝑐𝑒𝑚𝑖𝑐𝑎𝑙 , is the chemical energy of the muscles energy sources,

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 is the kinetic energy produces as a result of the chemical conversions.

𝐸𝑒𝑎𝑡 is the energy lost as heat during the chemical conversions to kinetic

energy.

The body stores energy in various forms. However, muscles energy is mainly derived from

Fat, Glycogen, Glucose, or ADP. To produce energy, catabolic activity has to convert them to

ATP. ATP is the chemical compound that converts easily to kinetic energy.

Each energy source has its own properties.

 Fat, is a form of energy, which functions as a long term energy storage. It is in

abundant supply and can sustain muscular activity with low intensity for a long

periods of time. Before it can be converted to ATP, it is first converted to glucose. Its

conversion rate to glucose is too slow for intense activities.

 Glycogen, is a form of simple sugar which functions as a short term energy storage. It

can readily be converted to glucose. However it is in limited supply and hence can be

exhausted after a short period of intense muscle activity.

 Glucose is another form of sugar which serves as an intermediate form between

energy stores and ATP. When the body discovers that it has more than can be used

immediately, it is converted back to glycogen. Glucose can be converted aerobically

or anaerobically to ATP, depending on the availability of oxygen. Studies show that

anaerobic conversion of glucose can only be sustained only for a very few minutes.

Exhaustion of this can cause muscle pain due to rising levels of lactic acid.

Aerobic conversion can sustain muscles activity for a long time; however it is highly

dependent on the oxygen-rich blood being pumped to the muscles.

19

 ADP is an anaerobic source of energy. In the event that glycogen cannot meet the

demand of energy required at the rate required aerobically, this will be used. Alone, it

can only sustain 30 seconds of intense muscles activity.

The brain may cease all voluntary muscles activity, if the level of carbon dioxide in the

blood is detected to reach a certain threshold. This would cease motion, keeping the heart

pumping only for life threatening activities. This state is commonly known as a blackout.

Below is a table that describes the various characteristics of each the energy source.

Primary

Sources

of Muscle

Energy

Conversion to ATP

(note the equations below are not

balanced. They also exclude by-

products such as heat energy)

Conversi

on Rate

Anaero

bic/

Aerobic

Availability

Fat 𝐹𝑎𝑡 → 𝐺𝑙𝑢𝑐𝑜𝑠𝑒

→ (𝑠𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒)

Very

Slow

 Abundant

Glycogen 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 → 𝐺𝑙𝑢𝑐𝑜𝑠𝑒

→ (𝑠𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒)

Slow Moderate.

Can sustain

10km

Glucose

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑂𝑥𝑦𝑔𝑒𝑛 + 𝐴𝐷𝑃 + 𝑃𝑖

→ 𝐴𝑇𝑃 + 𝐶𝑂2

+ 𝐻2𝑂

Moderate Aerobic

Produced

from fat or

glycogen.

Depends on

the

availability

of 𝑂2

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐴𝑇𝑃 + 𝐿𝑎𝑐𝑡𝑖𝑐 𝐴𝑐𝑖𝑑 Fast Anaerob

ic

Low. Can

only sustain

90 seconds

of intense

muscle

activity

ADP 𝐴𝐷𝑃 + 𝑃𝑖 → 𝐴𝑇𝑃

Very Fast Anaerob

ic

Low. Can

only sustain

30 seconds

of intense

20

muscle

activity

Table 2.2-1: Muscles energy sources conversion

2.2.3 Aerobic respiration

Aerobic respiration is therefore critical for muscle activity that lasts for longer periods. To be

able to supply the oxygen that is needed by these muscles, humans need to inhale air, which is

then transported by the blood via the lungs to the muscles. Inhalation varies depending among

other factors, the speed at which the runner is at. Oxygen inhaled is inversely proportional to

the speed of the runner. Hence as a runner attains higher speeds through acceleration, muscles

activity increases which implies energy consumption whilst oxygen intake decreases. If

unchecked the runner will collapse.

The heart also plays a central role in ensuring as much oxygen arrives to the muscles. This is

achieved by increasing its rate of pumping blood.

Below is a diagram that gives an overview of the process of aerobic respiration that is actually

described in (Body Atlas, 2006).

Table 2.2-2: Aerobic respiration cycle

.

For more on muscle energy use see (Horn), (Body Atlas, 2006). and (Adenosine

triphosphate).

Inhalation
of Oxygen

rich Air
using

Mouth
and Nose

Filtration in
the Lungs of
Oxygen into

the blood

Flow of
Oxygen Rich
Blood to the

Heart for
Distribution

Flow of
Oxygen rich
Blood to the

Muscles

The Muscles
use this

oxygen to
produces

energy
which is
used to
produce
Motion

Waste (heat
and carbon
dioxide) by
products of

energy
production

are released
into the
blood

Oxygen
depleted

blood flows
back to the

heart.

The Heart
directs
Oxygen

depleted
Blood to the

Lungs

Exhalation of
Oxygen

depleted air
using mouth

and nose
occurs

21

2.3 Decision making

All decision making processes in humans occur in the brain. This central organ is aided by

both short and long-term memory capabilities. So with constant repetition of training, a

human can learn to understand his competition, understand his limitations, and also make best

use of his body and lungs in order to be successful. The heart among other things also controls

the breathing rate, the heart beat rate all of which are central to motion. Carbon dioxide

triggers an alarm in the brain automatically stimulating nerves that control the chest muscles

and diaphragm. For a short time you can consciously override the breathing reflex but it is

impossible to suffocate yourself. The heart also controls the amount of oxygen in the blood by

detecting carbon dioxide levels. Decisions from/to the brain are done through nerves using the

spinal cord as a passage. The follow are some of the motion decision-making process the

brain controls summarized from (Body Atlas, 2006).

Table 2.3-1: The brains role in motion

Given the energy constraint described above, human needs to make good decisions in order

achieve goals that require motion. In the long distance running for instance, running at full

speed would not be wise if one is to complete a race. Chasing scenarios which are common in

games would require decision making on how to use energy optimally before and during the

chase if one is maximize the outcome of the activity. This is because the environment is in

continuous change also because the object being pursued be it in motion is also changing and

has strategies that may be unknown to the pursuer. This goes for evasion strategies as well.

Brain

controls the
breathing

rate,

controls the
heart beat

rate

monitors the
Carbon

dioxide level
in the blood

controls
muscles
activity

22

2.3.1 Q-learning

Q-learning is a reinforcement learning method that allows agents with no prior domain

knowledge in a sequential problem how to learn to choose actions that maximize the outcome

of a long-term goal following a series of experiences.

The Q-learning framework consists of the environment, sensor, actions, and rewards.

 Agent: the entity the needs to learn. In case of the runners, the agent would be that part

of the brain that is responsible for motion decision-making.

 Environment: consist of all entities that are affected by the action that the agent takes.

For example, in case of the runners, the energy stores, the position of the body with

respect to the running track can be considered part of the environment.

 Sensors: the means in which the agent is presented an interpretation of the

environment necessary for him to choose actions. For example, in running, sight is a

sensor used to interpret our position with respect to the finish line.

 Action is response the agent make that causes the environment to change state. For

example, in the case of runners, choosing to accelerate causes the body move.

 Reward is a numerical response from the environment to the agent that reinforces the

action previously performed.

The diagram below gives an overview on how the components are related at any time step 𝑡.

Here agent senses the state, 𝑠(𝑡) of the environment, and responds by taking an action, 𝑎(𝑡)

chosen among several possible ones in that state. The action causes the environment to

change to a new state. The new state, 𝑠(𝑡 + 1) is then sensed by the agent together with a

reward, 𝑅(𝑡 + 1). The agent’s goal is therefore to maximize the cumulative reward, 𝑅 𝑡 +

1 + 𝑅 𝑡 + 2 + 𝑅(𝑡 + 3)… that it will receive by performing these actions, this in effect

will also allow the agent to achieve a long term goal optimally.

23

Table 2.3-2: Q-learning agent-environment framework

The Q-learning agent program produces this optimal behavior by associating a numerical

value, known as the Q-value to each state-action pair it has visited. The Q-value represents

the desirability of choosing an action among several possible choices in that state. Q-values

with higher values are more desirable.

These Q-values are learned through the agent interacting with the environment and receiving

rewards. The values are initially inaccurate, but with more interaction with the environment

they get to be accurate and hence the agent becomes more consistent in achieving the goal. Q-

values can be updated as follows:

𝑄 𝑎, 𝑠 = 𝑄 𝑎, 𝑠 + 𝛼 (𝑅 𝑠 + 𝛾 𝑄 𝑎′ , 𝑠′ − 𝑄(𝑎, 𝑠))𝑎 ′
𝑚𝑎𝑥

Equation 2.3-1 Q-value update for a non-deterministic MDP

where,

𝑄 𝑎, 𝑠 is the Q-value of action 𝑎 in state 𝑠,

𝛼 is the learning rate,

𝑅 𝑠 is the reward at state 𝑠,

𝛾 is the discount factor,

𝑄 𝑎′ , 𝑠′ is the state that follows when action 𝑎 was performed in state 𝑠

Environment

Agent

state

s

reward

R

action

a

24

The formula, above works by slightly improving the previous Q-values 𝑄 𝑎, 𝑠 , of the

previous state 𝑠, using the reward that was sensed 𝑅 𝑠 , and the maximum Q-value that can

be obtained by choosing an action in the current state 𝑠′ . The rate of improvement is

controlled by the learning rate, 𝛼.

This specific update method presented above is relevant especially for environments that are

stochastic in nature, meaning, there is uncertainty in the state will be produced in the next

time step as a result of performing an action in the current state.

The Q-learning agent program is based on the assumption that the state percept possesses the

Markov Property. The Markov property holds when the current state percept (sometime

including a finite state history) contains enough information to predict the future without

having to inspect the entire percept history.

For further reading about this method please refer to (Sutton S & Barto G), (Russel & Norvig,

2003) and, (Mitchell, 1997).

2.3.2 Artificial neural networks

Artificial neural networks are known for their powerful capability of learning to classify

statistical probabilistic patterns (Bishop C. M., 2006). The networks consist of neuron (nodes)

that are interconnected by directed edges that carry a weight. The networks can be constructed

in various configurations, to suit the problem, but in essence consist of three essential parts;

the input layer, an optional hidden layer, and output layer. The networks form a mathematical

mapping of the form

𝑓 𝑥 → 𝑡

Where,

𝑥 ≡ 𝑥1, 𝑥2,… , 𝑥𝑁
𝑇 are the input signals vector accepted through the input

layer which contains 𝑁 nodes, each node accept a value 𝑥𝑖 and,

𝑡 ≡ 𝑡1, 𝑡2,… , 𝑡𝑀
𝑇 are output signals that are output through the output layer

containing 𝑀 nodes, each node represent a value 𝑡𝑗 .

The mapping 𝑓, is performed by rippling the inputs through the network using the directed

edges and strengthening them by their weights, until they arrive at the output node. The

25

signals arriving at each node in the hidden layer or output layer, are activated, using an

activation function in the form shown below,

𝑎𝑗 = 𝑔 𝑤𝑗𝑖 𝑥𝑖

𝑑

𝑖=0

Equation 2.3-2 Neuron activation function

Where,

𝑎𝑗 is the output signal of neuron j,

𝑔 is the activation function.

𝑤𝑗𝑖 is the weight of on the edge ji,

𝑥𝑖 is the input signal

To represent a non-linear mapping, the activation function needs to be non-linear as well.

Common activation functions used are the logistic and sigmoid functions, which are

continuous, non-linear, and differentiable. The differentiable characteristic allows us to

minimize the error during training of the network.

A neural network can also perform the task of learning the mapping relation 𝑓, between 𝑥 and

𝑡. The task of a learning neural network is of the following nature; to take examples

comprising of 𝑁 observations of inputs 𝑥, together with the corresponding observations of the

output value 𝑡, and to produce a network also that map these examples with minimal error.

Most of the learning is done by adapting the weights 𝑤𝑗𝑖 so that the network produces correct

outputs. The number of hidden nodes in a neural network plays a large in the networks

capability to learn highly non-linear problems. But too many hidden nodes can also affect the

performance of network to classify unseen examples.

In this thesis we shall particular attention to one particular configuration, an acyclic, fully

connected (only between nodes in adjacent layers) feed forward network. In fact, studies show

that it is possible to represent any continuous functional mapping, using a two-layered

network to some degree of accuracy, using a sufficient number of hidden nodes. The example

below, serves to illustrate its essential features.

26

Table 2.3-3: An acyclic, fully connected, feed forward multilayer neural network example

The network is acyclic because no edges flow backwards

It is fully connected because each node receives signal from all other node in the preceding

layer

It is a feed forward network because the signals are directed to only flow forwards

The oval shapes represent neurons divided into three parts to represent the accept of signals,

activations of the sum signal and output. The network above is a two-layer network, because

only two contain neurons that can be activated.

The small box represent bias nodes usually possess a fixed input value and weight that are

adapted during training.

2.3.3 Roll-up of a neural network

In an acyclic, fully connected feed-forward network, the activation in any node [𝑙, 𝑖] is

computed using following recurrence relation. Activating the outer layer node causes the

hidden layer and input layer nodes to also be activated. This is result in a roll-up of values

through the network.

Input Layer HiddenLayer Outer Layer

0,1

0,2

0,3

0,4

1,1

1,2

2,1

2,2

2,3

1,0 0,0

27

𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖 =

 𝑔 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙 − 1, 𝑗 𝑤(𝑙 − 1, 𝑗 , 𝑙, 𝑖)
𝑛

𝑗=0
 𝑙, 𝑖 > 0

−1 𝑖 = 0
𝑥[𝑖] 𝑙 = 0

Equation 2.3-3 Rollup activation function

where,

𝑔 is the activation function. Activation functions typically used are the sigmoid

or the tangent hyperbolic functions.

𝑤: (represented as vertices) are the weights usually represent a vertices,

Nodes 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 0 = −1, in the outer and hidden layers are known as the

bias.

 Nodes 𝑎𝑐𝑡𝑖𝑣 0, 𝑖 = 𝑥[𝑖] represent the value of an input vector attribute

2.3.4 Learning using backpropagation

Neural network learning is performed by adjusting the weights 𝑤 of the network. One

effective method used to do this is known as backprogation. What backpropagation does is it

adjust the weight by rippling the share of the error ∆ 𝑎, 𝑙, 𝑖 , which typically uses the intuition

of the mean square of error which is the half the square of the difference between the expected

output vector 𝑡 and the actual value obtained from a roll-up 𝑎𝑐𝑡𝑖𝑣(𝑎, 𝑙, 𝑖). Mean square of

error allow for the error to minimized using the gradient descent method. Below is how the

weight update is computed.

𝑤(𝑙 − 1, 𝑗 , 𝑙, 𝑖) = 𝑤(𝑙 − 1, 𝑗 , 𝑙, 𝑖) + 𝛼 × 𝑎𝑐𝑡𝑖𝑣(𝑎, 𝑙 − 1, 𝑗) × ∆(𝑎, 𝑙, 𝑖)

Equation 2.3-4 Weight update in neural network learning

and

∆ 𝑎, 𝑙, 𝑖 =

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖 × (𝑡[𝑖] − 𝑎𝑐𝑡𝑖𝑣(𝑥, 𝑙, 𝑖)) 𝑙 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖 ∆ 𝑥, 𝑙 + 1, 𝑗 𝑤(𝑙, 𝑖 , 𝑙 + 1, 𝑗)
𝑛

𝑗=0
𝑙 𝑖𝑠 𝑎 𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

Equation 2.3-5 Backpropation error in neural network weight update

Where,

 𝛼: is the learning rate

28

𝑔′(): is the derivative of the activation function

Example

We use the network presented in Table 2.3-3: An acyclic, fully connected, feed forward

multilayer neural network example. let 𝑙 = 2, 𝑗 = 2, 𝑖 = 3,

Therefore,

𝑤(1,2 , 2,3) = 𝑤(1,2 , 2,3) + 𝛼 × 𝑎𝑐𝑡𝑖𝑣(𝑥, 1,2) × ∆(𝑥, 2,3)

Where

∆ 𝑎, 2,3 = 𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 2,3 × (𝑡[3] − 𝑎𝑐𝑡𝑖𝑣(𝑥, 2,3)

For further details on neural network can be found in (Bishop, 2007) and (Mitchell, 1997)

29

Chapter 3. A game motion agent combining Q-learning and neural

networks

In this section, we will go about modeling an agent program that addresses the thesis

question.

We will begin by presenting a realistic model of an athletic game architecture and layout it

most prominent features, whilst staying true to the classic game architecture presented earlier

in section 2.1 .

Following that, we shall propose a model that reflects realistic actuation for human motion.

Here we eventually end up with an algorithmic design that captures breathing, energy

conversion, and kinematics.

Modeling of sensation and perception for human motion will be addressed. This analysis will

allow us to capture the complexity of the environment that will aid us in identify the most

appropriate agent program for the modeling motion decision-making processes. Here we will

also propose the algorithmic design for sensation and perception.

Finally, but most importantly, the thesis will then model the actual decision-making process

that produces realistic motion. This is subdivided into two parts, direction and the magnitude

of acceleration. The athletic competition will first be fully characterized in A.I. terms.

Following that, reinforcement learning will be introduced as method for domain knowledge

acquisition. The generalization of the domain knowledge then be addressed using a combined

model featuring Q-learning and neural networks. Complete algorithms capturing the decision

making for realistic motion will also be proposed.

30

3.1 Modeling the athletic competition for realistic motion

In this section we relate a realistic athletic competition to the classic game architecture

introduced in section 2.1. Specifically we take an Olympic running event and relate it to the

initialization, episode, game loop, and finalization. In so doing, we demonstrate that realistic

motion can actually be fitted easily in current game architecture without major overhauls.

3.1.1 Initialization

Initialization in an athletic running competition involves several aspects that are of interest to

motion,

 Loading of the running track and the rules of the competition described by

(Competitions - Rules and Regulations).

 Loading the runners who will participate, random initial positioning of them on the

track at the start line with their initial energy configuration, and prior knowledge of

motion. This initial state should not create any unfair advantage to any athlete. But for

the sake of observing variations in behavior we will assume some slight randomization

in the initial value of position and energy sources. Lines 6-9 in the algorithm below

describes this part of the game.

3.1.2 Episode

The actual Olympic race easily maps to the computer game concept of an episode. Each

athlete is required to run around a track whilst following rules of the competition until a

stopping criterion is met. One stopping criteria that can be used is once every runner has

finished the race, that is, either by crossing the finish line or being disqualified. In an episode,

each runner will be required to perform a sequence of actions, mainly to produce motion.

Such an environment is defined as sequential in AI terms. This sequence can be controlled

using the game loop, between lines 10-16.

3.1.3 Game loop

This part includes sensing, perceiving, and acting logic of each runner that is participating in

the race. It is also where the game graphics are managed. For a game that will require

animations such as this one, it should at least be processed at least 24 times per second for

frames refresh (David Hearn, 2004). So spending too much computation time on game logic

is undesirable. Hence realistic human motion logic should not require too much

31

computational resources. For fairness, it may be observed that each runner is allowed a

chance to act on each game loop is he is still in the race.

At this point, we can already start replacing abstract terms used in Table 2.1-1: The Game

Algorithm with more specifics.

The algorithm below describes the analysis .

1 function AthleticsGameEpisode(gameSettings)

2 inputs: gameSettings

3 local variables: track, contains the athletic environment and its competition

 rules

4 runners, the set of runner competing in the race each with a

 velocity vector v, position vector p, and energy store e,

 and race status rs

5 𝜕𝑇, the time step that elapsed since the previous game loop

6 InitialiseAthleticEpisode

7 track ← InitializeRunningTrack(gameSettings)

8 runners ← AddRunnersRandomlyOnToTrack(gameSettings, track)

9 AthleticEpisode

10 Repeat

11 foreach r in runners

12 if rs[r]is InRace or NotStarted then

13 percept ← Sense(r, track, runners)

14 acceleration,direction←DecideAction(r, percept, domainKnowledge)

15 v[runner],v[position],r[eStore] ←

 ActuateMotion(r, acceleration, direction, 𝜕𝑇)

16 until RunningEpisodeStoppingCriteria(runners, track)

17 FinalizeAthleticEpisode

18 PresentResults(runners)

Table 3.1-1: The Athletics Competition Algorithm

It is no longer necessary maintain a runner in the game loop once he has completed the

race, the primary action as line 12,

The primary action runner should be making decisions upon is acceleration, split into

its direction and magnitude component (line 14).

The actuation of motion should at least produce a new state in velocity, position, and

energy source for the runner (line 15).

32

3.2 Modeling actuators for realistic motion

In this section we describe how we model actuation of motion in an athletic running

competition. We address the 3 key components that bring about motion.

 Breathing, which is necessary for aerobic respiration, will first be modeled, and an

algorithm proposed.

 Actual motion, which involves moving the center of mass from one point to another.

Rigid body kinematics will be addressing this.

 Lastly, energy conversions, which bring about the possibility of motion, that were

introduced in section 2.2.2 will then be modeled and an algorithm proposed.

3.2.1 Breathing

Oxygen is a key component in the catabolic activities that convert glucose to ATP, which

powers the muscles to create motion. Section 2.2, presented a detailed account of aerobic

respiration, which led to the insight that breathing the provider of oxygen was an essential

part of motion. Oxygen that arrived to the muscles was also affected by the speed of the

runner, because breathing becomes harder when in motion. Below, we present an algorithm

that computes the amount of oxygen available to the muscles. We shall also assume a

complex relation non-linear relation on the amount available in this form.

𝑜𝑥𝑦𝑔𝑒𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡𝑒 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 ∝
1

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡𝑒 𝑟𝑢𝑛𝑛𝑒𝑟2

Equation 3.2-1 Oxygen available of muscles

1 function Breathe(𝑠𝑝𝑒𝑒𝑑,𝜕𝑇)

2 returns new oxygen in blood available to muscles of runner

3 inputs: speed, the current speed of the runner

4 𝜕𝑇, the time step that elapsed since the previous inhalation

5 statics: ∝, the rate of breathing oxygen

6

7 𝑜2 ←
∝ ∂T

1+ speed 2

8 return 𝑜2

Table 3.2-1: Runner.Breathe Algorithm

In the actual implementation, the breathing rate was chosen, such that it could support

running at 5m/s using only aerobic respiration of available glucose. Increasing speeds,

would then rely on anaerobic means to provide for the energy demand.

33

3.2.2 Rigid body motion

We stated earlier, that human motion consists of a series of complex angular movements by

the limb skeletal muscles about their joints. To compute exactly what goes on is complicated

and deserves a thesis in its own right, hence beyond the scope of this work. However, for the

sake of simplicity, we will assume the resultant forces created, equals that of rigid body

motion. After all, we are interested in the movement of the center of gravity from one point to

another. Rigid body kinematics deals with exactly this kind of motion and contains solid

theory based on Newtonian mechanics.

We expressed the resultant force for human motion based on the following relation in

Equation 2.2-1 The resultant force of motion

𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠 − 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

Where,

𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠 is the force created by the muscles, primarily governed by instruction

from the brain to accelerate by a . Hence, 𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠 = 𝑚a , assuming the human

body is a rigid body.

𝐹𝑑𝑟𝑎𝑔 is the opposing force created due to atmospheric resistance. i.e. wind.

These are most quite negligible in most conditions. However we can state that,

𝐹𝑑𝑟𝑎𝑔 ∝ 𝑣 . Hence, 𝐹𝑑𝑟𝑎𝑔 ∝ 𝑘𝑣 . During an athletic competition, weather

conditions are usually not expected to change radically in the course of the event

hence we shall assume𝑘 = 𝑐, where c is a fixed constant for the sake of

simplicity.

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is the friction created by the feet contacting the ground. Running on ice

usually explains the significance of friction. 𝐹𝑑𝑟𝑎𝑔 = 𝜇𝐹𝑁𝑜𝑟𝑚𝑎𝑙 = 𝜇𝑊 = 𝜇𝑚𝑔,

Where 𝜇 is the coefficient of friction and 𝑊 is the weight of the solid (runner).

In normal athletic conditions, the effect is usually not extreme and does vary

during the time of the event because the track surface is uniformly of the same

material, hence we assume 𝜇 = 𝑘, where k is a fixed constant for the sake of

simplicity.

This gives rise to the following algorithm, that allow us to compute the new velocity, position,

and energy required, for a runner to move in a given time step ∂T. Line 12-13 compute the

34

resultant force of the motion based taking the minimal effects of drag and friction. Lines 15-

17, computes the change in position of the runner, and the new velocity achieved. Line 18,

computes the energy required to move the runner to the new position.

1 function Move(runner, a, 𝑑 , 𝜕𝑇)

2 returns new velocity of runner, new position of runner, kinetic energy required

3 input: a, the new magnitude of the acceleration

4 𝑑 , the new direction unit vector of the runner

5 𝜕𝑇, the time step

6 runner, one competing in the race containing his current velocity vector 𝒖 ,

 and position vector 𝒑 ,

7 local variables

8 𝑣 , the new velocity vector of the runner.

9 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 , the energy required to produce motion

10 𝑝′ , the new position vector of the runner

11

12 𝑎 ← 𝑎 × 𝑑

13 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 ←
𝑚𝑎 −𝑘𝑢 − 𝜇𝑚𝑔𝑑

𝑚

14

15 𝑣 ← 𝑢 + 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 × 𝜕𝑇

16 𝜕𝑝 ← 𝑢 × 𝜕𝑇 +
1

2
𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑎𝑛𝑡 × 𝜕𝑇2

17 𝑝′ , ← 𝑝 + 𝜕𝑝

18 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ← 𝑚𝑎 𝜕𝑝

19 return 𝑣 , 𝑝′ ,𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

Table 3.2-2: Runner.Move Algorithm

Produces linear motion using rigid body kinematics. This algorithm assumes the

runner behave like a solid object with no rotational motion.

3.2.3 Energy conversion

The preceding two sections in motion actuation provided the necessary ingredients for energy

conversions, i.e the kinetic energy required 𝐸𝑘 , and 𝑂2 available in the time step 𝜕𝑇. Here we

model how the fulfillment of the 𝐸𝑘 , the energy required for motion is done. The theory on

this work was presented section 2.2.2.

The algorithm below outlines the basic essentials energy conversion that the body muscles

undergo in order to fulfill the energy request. It first converts glycogen and fat to glucose line

35

7-9. Fat is only converted to glucose if glycogen already is below a storage limit. Any excess

glucose that is unused is converted back to glycogen, see lines 16-17. Following the

conversion to glycogen, production of ATP ensues in the sequence of aerobic-glucose, adp-

anaerobic, and lastly anaerobic-glucose, see lines 10-15. Atp is requested from the sources,

only if the preceding sources cannot fulfill the requirement.

1 function ProduceKineticEnergy(eStore, 𝑂2, 𝐸𝑘 ,𝜕𝑇)

2 returns new energyStore of runner

3 inputs: 𝑂2: oxygen in blood available to muscles of runner

4 𝐸𝑘 : kinetic energy required by the muscles

5 𝜕𝑇 : the time step´

6

 eStore: the set of energy stores of fat, glucose, glycogen, adp, atp, and

 the the efficiency eff representing the amount of lactic acid

7 glucose ←ProduceGlucose(glycogen, 𝜕𝑇)

8 if IsBelowStorageLimit(glycogen) then

9 glucose ← ProduceGlucose(fat, 𝜕𝑇)

10 if 𝐸𝑘 > 0 then

11 glucose, 𝐸𝑘 , 𝑂2 ← ProduceATP(aerobic, glucose, 𝑂2, 𝐸𝑘 , 𝜕𝑇, eff)

12 if 𝐸𝑘 > 0 then

13 adp, 𝐸𝑘 ← ProduceATP(anaerobic, adp, 𝑂2, 𝐸𝑘 , 𝜕𝑇, eff)

14 if 𝐸𝑘 > 0 then

15 glucose, 𝐸𝑘 , 0,eff ← ProduceATP(anaerobic, glucose, 𝑂2, 𝐸𝑘 , 𝜕𝑇, eff)

16 glycogen ← glycogen + glucose

17 glucose ← 0

18 return eStore

Table 3.2-3: Runner.ProduceKineticEnergy Algorithm

The following algorithm now presents how these different energy sources go about fulfilling

the 𝐸𝑘 request. Table 2.2-1: Muscles energy sources conversion) is useful in accounting for

most of what goes on in here.

The algorithm produces ATP from either glucose or adp source depending on the eType

requested. It does so anaerobically or aerobic depend on the rType requested. This process is

inefficient, such that, it wastes energy through heat. This inefficiency can increase based on

the lactic energy produced. See lines 19,28-29 for the handling of efficiency.

36

So in order to produce the energy required 𝐸𝑘 , line 3 takes into account the inefficiencies.

Thereon, line 15-22, atp is produced using the rType and eType requested,. These chemical

conversions reduce the energy source and the oxygen (if done aerobically).

Lines 24-27, handles the energy that could not be fulfilled by the conversion. The functions

 ProduceAtpAerobicallyFromGlucose,

 ProduceAtpAnaerobicallyFromGlucose, and

 ProduceAtpAnaerobicallyFromADP

take into account the balancing of chemical equation and product rate described in section

2.2.2. The conversions also assume the Law of Conservation of Energy.

1 function ProduceEnergy(rType, eType, 𝑂2, 𝐸𝑘 ,𝜕𝑇, 𝑒𝑓𝑓)

2 returns new energyStoreResidual of runner,

3 new 𝐸𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 of runner,

4 new oxygenResidual of runner,

5 new efficiency

6 ínputs: 𝑂2, oxygen in blood available to muscles of runner

7 𝐸𝑘 , kinetic energy required by the muscles

8 𝜕𝑇, the time step

9 eff ,the efficiency of the conversion of glucose to atp

10 rtype, the type of conversion either aerobic or anaerobic

11 eType, the energy type

12

13 𝑎𝑡𝑝𝑁𝑒𝑒𝑑 ←
𝐸𝑘

 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

14

15 if IsAerobic(rType) and 𝑂2> 0 and IsGlucose(eType) then

16 atpProduced, oxygenResidual, energyStoreResidual ←

 ProduceAtpAerobicallyFromGlucose(atpNeed, eType, 𝑂2)

17

18 if IsAnaerobic(rType) and IsGlucose(eType) then

19 atpProduced, lacticAcidResidual, energyStoreResidual ←

 ProduceAtpAnaerobicallyFromGlucose(atpNeed, eType)

20

21 if IsAnaerobic(rType) and IsADP(eType) then

22 atpProduced, energyStoreResidual ←

37

 ProduceAtpAnaerobicallyFromADP(atpNeed, eType, 𝑂2)

23

24 if 𝑎𝑡𝑝𝑁𝑒𝑒𝑑 > 𝑎𝑡𝑝𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 then

25 𝐸𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ← 𝑎𝑡𝑝𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 × 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

26 Else

26 𝐸𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ← 𝐸𝑘

27 𝐸𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← 𝐸𝑘 − 𝐸𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

28 if lacticAcidResidual <> 0

29 efficiency ← lacticAcidResidual / lacticAcidFactor

30

31 return energyStoreResidual, 𝐸𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 , oxygenResidual, efficiency

Table 3.2-4: Runner.ProduceEnergy Algorithm

3.2.4 Motion actuation

The previous discussions now allow us to describe the essential parts of motion actuation in

concrete terms. The algorithm below puts together breathing, moving, and producing kinetic

energy of a runner in a time step of motion. This completes the modeling of actuation of

realistic motion.

1 function ActuateMotion(runner, acceleration, direction, 𝜕𝑇)

2 returns new velocity vector of the runner,

3 new position vector of the runner,

4 newEnergyStore of the runner

5

6 input: runner, competing in the athletic competition, contains his speed s, and

 energyStore e

7 acceleration, magnitude of the acceleration

8 direction, direction of the acceleration

9 𝜕𝑇, the time step that elapsed since the previous actuation

10 local variable: 𝑂2, the amount of oxygen in the blood for the muscles

11 𝑂2 ← Breathe(𝜕𝑇, s[runner])

12 velocity, position, 𝐸𝑘 ← Move(runner, acceleration, direction)

13 eStore← ProduceKineticEnergy(𝑒 𝑟𝑢𝑛𝑛𝑒𝑟 ,𝑂2, 𝐸𝑘 , 𝜕𝑇)

14 return velocity, position, eStore

Table 3.2-5: Runner.AcuateMotion Algorithm

38

3.3 Modeling sensation and perception for realistic motion

The environment dictates how motion can successfully be brought about. It is the state of the

environment that dictates the motion decision-making process that yields an action. For

runners, the environment consists of internal body functions and external entities. In particular

it consists of the following:

 The Competition

 Ego

 Fatigue

In this section, we shall describe these elements in terms how runner senses and perceives

them. It is important sensation and perception is modeled correctly. First, because it allows us

to capture and characterize the correct percept needed for decision-making. Secondly, it

allows us create agents that are fair, or rather are not perceived as cheating. Creating a

sensation and perception model that allows non-player to access to a lot more information

than a normal human being can comprehend, may lead to an unfair advantage. Here, we will

describe the AI properties that are critical in building successful agent programs that can

produce optimal results. For the sake of complexity, passive sensing is assumed.

3.3.1 The competition

“Our perceptual systems may have evolved to provide us with a sense of space that is not

totally accurate but accurate enough to allow us to navigate the world”

(Matlin & Foley, 1997)

The competition in the athletic environment is perceived mainly in terms of the egocentric

distance. Although not much understood on how distance is perceived, the eye can perceive

the egocentric distance between an object of interest and the observer, using several visual

cues (Matlin & Foley, 1997). The complexity of distance perception increases especially

when the observer or the object is also moving. Hence perceiving the distance to the fixed

finish line is easier than perceiving the distance to a moving competitor. With this insight it is

therefore important we include this partially observable nature in non-player character

agents so that they are not perceived as cheating.

39

In an athletic competition, more than one runner participates in a race. In the middle distance

events up to 18 runners compete (Athletics). Each runner attempts to win the race. So success

for one means failure for the other. AI describes such an environment as multi-agent.

This partially observable, multi-agent environment also results in an environment that is also

stochastic. Suppose a runner A while overtaking decides to increase acceleration in order to

take outright lead in the next time-step. However the other runner B also decides to increase

acceleration at the same time in order to also take outright lead. This would cause none of the

runners to take outright lead. Hence either runner cannot guarantee achieving a certain state

based on the current state and action. This aspect introduces uncertainty.

Another characteristic of this competition is that it is dynamic. The environment is in

continuous change. At every time step, the race is in continuous change. Hence each runner is

required to act at every response time.

Sensing the competition information can either be done visually by observing what is the

runners line of sight, or by detecting location of activity using hearing and turning to it, if

runner are not in direct line of sight.

In real terms, there may be many runners, making it hard to sense all of them at every time

step. So realistically we can assume that a runner can at least sense and perceive the most

important competitor. That is naturally the leader. In case he himself is the leader, he may

only be interested in keeping track of the runner right behind him.

The following algorithm describes perception of competitor can be implemented. The percept

is a discretized form of the egocentric distance from the primary competitor.

1 function PerceiveCompetitors(runner, track, runners)

 returns percept of competitors

2 input: runner, athlete who is perceiving the competition

3 track, is the athletic track containing positional information and rules

4 runners, are the set of runners participating in the competition

5

6 if IsLeader(runner, runners) then

7 return PositionOfSecondRunner(runners)

8 return PositionOfLeader(runners)

40

Table 3.3-1: Runner.PerceiveCompetitor Algorithm

3.3.2 Ego

This is the awareness of one’s self with respect to the external world. In motion three aspects

are important

 The perception of self with respect to the objective and,

 The perception of one’s own speed.

 Awareness of one’s self to the rules

The discussion of distance sensation and perception was made in the previous section. It was

stated that perception of distance was always to some extent inaccurate but less so to fixed

goals, in this case. So we can assume the perception of distance is also inaccurate but less so

than to dynamic competitors.

As for perception of movement of one’s self, humans perceive movement using a measure of

velocity. It has been demonstrated that humans are capable of a surprisingly high accurate

perception of motion. It has also been established that there is a velocity detection threshold.

This threshold varies depending on the cues available to aid movement perception (Matlin &

Foley, 1997).

These findings thus also reveal a partially observable nature in the way we perceive speed.

The following algorithm now presents how the speed and the goal percept can be

implemented. One way to PerceiveSpeed can be implemented, is by simply discretizing the

magnitude of the velocity to integer accuracy. Similarly, the PerceiveDistanceToGoal percept

can be implemented by simply discretizing the distance to the finish line to a range of

accuracies.

1 function PerceiveEgo(runner, track, runners)

 returns speed percept, goal percept

2 input: runner, is the athlete who is perceiving the competition, and has

 velocity vector v, and position vector p.

3 track, is the athletic track containing positional information and rules

4 runners, is the set of runners participating in the competition

5

6 return PerceiveSpeed(v[runner]), PerceiveDistanceToGoal(track, p[runner])

Table 3.3-2: Runner.PerceiveEgo Algorithm

41

3.3.3 Fatigue

The last percept required for motion is fatigue. Fatigue represents the runners percept of the

energy he has remaining available for motion. The brain can state the energy level of the

body. Cues such as the carbon dioxide level, lactic acid, and breathing rate provides this

information (Body Atlas, 2006). We can safely assume that it is of a partially observable

nature.

The following algorithm presents the percept for fatigue. It simply perceives the energy

available based on the three constraints.

 Glycogen level

 ADP level

 Efficiency

It is unnecessary to track fat, since one can always assume its presence. Whilst glucose is

actually a function of glycogen and fat hence can is always derived from the two sources.

Efficiency represents the amount of lactic acid levels in the blood which cause the body to

become inefficient in producing the necessary kinetic energy.

Humans perceive the level of these attributes through feelings of fatigue; hence the percept is

of a partially observable nature. One way to represent the percept is to introduce noise by

discretizing the output, represent as a numerical value.

1 function PerceiveFatigue(runner)

2 returns adpPercept, glycogenPercept, efficiencyPercept

3 inputs: runner, the athlete who is sensing the environment, who has an

 energyStore e containing adp, glycogen, and efficiency

4

5 return

6 PerceiveEnergy(adp[e]),

7 PercieveEnergy(glycogen[e]),

8 PerceiveEfficiency(efficiency[e])

Table 3.3-3: Runner.PerceiveEgo Algorithm

3.3.4 Implementing a sensation & perception

We can now combine together all the sense and percepts for runners and describe the

sensation and perception algorithm below. The function returns a percept given the input from

42

the track and runners. Breaking the rules or blacking out result in disqualification percept.

Crossing the finish line results in an evaluation of his degree of winning or losing. At all other

intermediate states in the race, the runners’ percept are a composite of ego, competition, and

fatigue.

1 function Sense(runner, track, runners) returns percept of motion

2 input: runner, the athlete who is sensing the environment

3 runners, is the set of runners participating in the competition

4 track, is the athletic track containing positional information and rules

5 local variables: percept, the current motion percept

6

7 if EnergySourcesHaveBeenExhausted(runner)

8 percept ← DISQUALIFIED;

9 else if HasCrossedFinishedLine(runner, track)

10 if CannotStopWithoutBlackingOut(runner)

11 percept ←DISQUALIFIED

12 else if not WinnerIsClaimed(runners)

13 percept ← “WON” + runner.PerceiveCompetitor(runners)

14 Else

15 percept ← ”LOST” + runner.PerceiveCompetitor (runners)

16 else if runner.HasBrokenRacingRules(track)

17 percept ← DISQUALIFIED

18 Else

19 percept ←

20 runner.PerceiveEgo(track) +

21 runner.PerceiveFatigue(runner.energyStore) +

22 runner.PerceiveCompetitor(runners)

23 return percept

Table 3.3-4: Runner.Sense Algorithm

The composites of ego, competition, and fatigue sensation can be broken down into the

following attributes presented in the table below. The table also includes examples of how the

percept values can be presented to match realistic perceptual characteristics such as partial

observability.

43

Motion

Senses

Description Percept Values

Distance Discretized to integer values

assumed to be meters. Interval

increase with distance.

Maximum distance is the

marathon distances.

1, 2, 3, 4, 5, 10, 20, 60, 100, 200, 300,

400, 600, 800, 1000, 1500, 3000, 5000,

10000, 50000

Speed Discretized into integer values

of meter per second.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20

Competitor Discretized into integer values.

Relative distance range to

competitor presented in

brackets.

FAR_AHEAD (10..),

AHEAD (5..10),

JUST_AHEAD (0..5),

JOINT_LEADER (0),

JUST_BEHIND (-5..0),

BEHIND (-10..-5),

FAR_BEHIND (-50..-10),

VERY_FAR_BEHIND (-100..-50),

EXTREMELY_BEHIND (-200..-100),

IMPOSSIBLY_BEHIND (..-200)

ADP Discretized in integer values

of energy measured. Ten

equidistant ranges presented.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Glycogen Discretized in integer values

of energy measured. Ten

equidistant ranges presented.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Efficiency Discertized into 5% ranges 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,

55, 60, 65, 70, 75

Table 3.3-5: Runner motion percept values

We also observe that the percept is of a Markovian nature, specifically non-deterministic

Markov Decision Process. The percepts returned, by the Runner.Sense are sufficient to

predict what action to take, without having to inspect the entire percept history of the agent.

Having to inspect the percept history would make the problem intractable especially where

the game loop place a time constraint for time spent processing game logic.

44

3.4 Modeling acceleration decision making for realistic motion

We now move on to modeling decision-making for realistic motion. Motion relies on the

brain to decide how much acceleration should be produced by the muscles to cause the body

to move. Acceleration is a vector quantity consisting to two parts, the magnitude and, the

direction. These two work together in combination to produce optimal results in motion. The

choice of direction during motion is an area that has occupied game programmers for a long

time now for obstacle avoidance, chasing and evasion strategies. Various methods have been

developed including those that use rule-based fuzzy logic, potential function-based

movement, path finding and way point techniques (Bourg & Glenn, 2004). In an athletic

environment, direction is used for avoiding other runners, and to navigate the tracking using

the shortest path. Simple techniques such as waypoints can be used to overcome the athletic

problem. This is done simply by choosing the inner track if it is unoccupied. In this thesis, we

will focus only on the choice of the magnitude of the acceleration and assume known

techniques to handle the direction aspect separately.

In the previous sections, we described the game, the actuation, the environment, and sensation

and perception for realistic motion. It was also demonstrated that the environment was

dynamic, stochastic, sequential, partially observable, and multi-agent, which in AI terms is

regarded the most complex environments (Russel & Norvig, 2003).

Agent

Type

Performance

Measure

Environment Actuators Sensors

Runner Consistency in

winning an

athletic

competition

Competitors and self in

motion

Skeletal muscles and

their chemical energy

stores

Breathing, heartbeat

and blood for oxygen

circulation

The running track and

competition rules

Acceleration /

Decelerate using

Skeletal Muscles

Turn using

Skeletal Muscles

Distance to

finish line

Energy

remaining

Distance to

primary

competitor

Current speed

Table 3.4-1: PEAS for an athletic competition

45

At this stage we can establish the performance measures, environment, actuators and sensor

(also known as PEAS) for an agent in an athletic competition. These PEAS will play an

important role in helping us overcome basic design issues when modeling for a rational agent.

Table 3.4-1: PEAS for an athletic competition above summarizes them.

This section we will address how we deal with the decision making process that produces a

magnitude of acceleration at each time step so as to accomplish the performance measure that

is defined. We will begin discussing how knowledge can be acquired that achieves the

performance measure. Two methods in AI, Q-learning and neural networks will be the

primary focus in this section, and hence we eventual propose a solution that consists of a

combined model of the two methods.

3.4.1 Learning in the absence of prior domain knowledge

The athletic competition requires a runner to perform a sequence of actions in the

competition. At each point during the race, the runner perceives the environment and almost

instantaneously is required to instruct the skeletal limbs muscles to accelerate in order

produce a force that results in motion. The choice of acceleration at each point in the race

plays a fundamental part in the overall outcome. At this point we do not have the domain

knowledge to produce a sequence of actions that lead to achieving the performance measure

of winning in a consistent manner. Naive methods would require us to maintain a state history

of each episode and measure each one against the other. It would require huge resources in

terms of time and space complexity to handle a multi-agent and dynamic environment such as

this.

Reinforcement learning allows us to model an agent program that can learn unsupervised, that

is, without any prior domain knowledge. Reinforcement methods are built upon dynamic

programming methods. Dynamic programming, are powerful programming techniques for

solving optimization problems by recursively building solution to larger sub-problems

(Kleinberg & Tardos, 2006), thus have low computational demands in moderate state-spaces.

Reinforcement method, however poses the following additional requirements if they are to

work.

1. the environment must provide feedback in terms of a reward

2. the percepts must possess Markov property

46

The requirements combined are what known as Markov Decision Process. Fortunately, we

already concluded in section 3.3.4 that the runners’ percept of the environment also possesses

the non-deterministic Markov Decision Process. What remains is the reward which we

discuss in the next section.

3.4.2 Defining rewards percept for an athletic competition

We now introduce the reward percept into the athletic agent. A reward is a signal provided by

the environment to the agent to indicate the value of the action the agent has taken in a state.

Rewards carry a numerical value; higher values encourage agents to aspire to reaching them

whilst lower ones do otherwise. It is easy relate the reward percept to an athletic competition,

especially at the end states of a race. High rewards would indicate winning, whilst lower one

would indicate losing. An earlier discussion in section 2.3.1 provided a detailed discussion on

the role played by the reward in Q-learning.

The following table shows an example on how rewards can be perceived from the

environment in an athletic competition. Winning is reward positive value and losing

otherwise. Not completing the race, by either blacking out or breaking the competition rules is

least rewarded. Losing or winning can also be present as a degree by the reward percept. In

the athletic environment winning reward more if the nearest is even further away. Losing by

large distance is also poorly reward as opposed to losing by a small margin of distance. This

is done so are to encourage winning in a convincing fashion.

State Reward

Disqualified -1.0

Losing far behind winner -0.5

Losing just behind winner -0.1

Winning just behind nearest winner 0.5

Winning far ahead nearest loser 1.0

All other states in the race 0.0

Table 3.4-2 Examples of rewards for runner
To implement this reward percept, one can simply extend the Table 3.3-4: Runner.Sense

Algorithm to include one an extra return value containing the percept of the reward. The table

below shows the extended version containing the handling of the reward percept.

47

1 function Sense(runner, track, runners) returns percept of state, percept of reward

2 input: runner, the athlete who is sensing the environment

3 runners, is the set of runners participating in the competition

4 track, is the athletic track containing positional information and rules

5 local variables: rewardRercept, the reward percept from the environment

6 statePercept, the runners motion percept

7 compStatePercept, the percept of the competitors

8 compRewardPercept, the percept of reward to the competition

9

10 if EnergySourcesHaveBeenExhausted(eStore) then

11 statePercept ← DISQUALIFIED;

12 rewardPercept ← -1;

13 else if HasCrossedFinishedLine(runner, track) then

14 compStatePercept, compRewardPercept ← PerceiveCompetitor(runner,runners)

15 if CannotStopWithoutBlackingOut(runner) then

16 statePercept ←DISQUALIFIED

17 rewardPercept ← -1;

18 else if not WinnerIsClaimed(runners) then

19 statePercept ← “WON” + compStatePercept

20 rewardPercept ←compRewardPercept

21 else

22 statePercept ← ”LOST” + compStatePercept

23 rewardPercept ←compRewardPercept

24 else if HasBrokenRacingRules(runner, track) then

25 statePercept ← DISQUALIFIED

26 rewardPercept ←-1

27 else

28 statePercept ←

29 PerceiveEgo(runner, track) +

30 PerceiveFatigue(runner) +

31 PerceiveCompetitor(runner, runners) +

32 rewardPercept ← 0

33 return statePercept, rewardPercept

Table 3.4-3: Runner.Sense Algorithm

Lines 5, 6, 7, 9, 12, 14, 17, 20, 23, 26, 32 and 33 have been added or altered to

include the handling of the reward. Line 14 receives a reward in the form of a

variable when the runner has finished the race. Table 3.4-2 Examples of

48

rewards for runner) is used to determine the reward which depends on the

degree of separation

3.4.3 Acquiring prior domain knowledge

At any real world athletic event, athletes are expected to be competent about the competition

prior to its commencement. In A.I. it is broadly termed as prior domain knowledge. In this

section we will describe how we can achieve modeling of this behavior.

Prior knowledge is most commonly acquired through prior experience. One method used to

acquire this knowledge is through training. We can allow the agent program to simulate an

actual event and participate in it. However a normal race is multi-agent in nature. To solve

this, we could include several copies of the running agent, in the same race, acting

independently but sharing the same repository of domain knowledge.

In section 2.3.1, we introduced Q-learning, a reinforcement learning method capable of

learning optimal behavior in environment in which it has no prior knowledge. To do this, Q-

learning maintains a value called a Q-value for every state-action pair.

This Q-value is updated using Equation 2.3-1 Q-value update for a non-deterministic MDP.

The choice of this update method suits the stochastic nature of this athletic environment

(Mitchell, 1997). The Q-value updated in this actually represents a probabilistic value of

choice for an action, which can be interpreted as the probability of that action achieving the

optimal solution. The algorithm below describes how the Q-learning update can be

implemented. It also computes the square of the difference of the error between the old and

the new value. The error can be used to measure the rate of convergence during training for

prior knowledge acquisition.

1 function Qlearn(currState, prevStateAction) returns new qValue, the square of

the error

2 inputs: currState, which contains a set of action a, and reward R

 prevStateAction, which contains the Q-value qValue

3 local variables:

4 error, stores the square of the difference between the old and new qvalue

5 newQValue: stores the new Qvalue

6 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 ← 𝑞𝑉𝑎𝑙𝑢𝑒 + 𝛼 (𝑅 + 𝛾 𝑚𝑎𝑥𝑎𝑞𝑉𝑎𝑙𝑢𝑒 – 𝑞𝑉𝑎𝑙𝑢𝑒)

7 𝑒𝑟𝑟𝑜𝑟 ← 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 − 𝑞𝑉𝑎𝑙𝑢𝑒

8 return 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒, 𝑒𝑟𝑟𝑜𝑟2

49

Table 3.4-4 AgentState.Qlearn Algorithm

But in order to learn, it needs to find a way to visit as many states and perform their actions so

as to discover which action yield good long-term rewards. Discovering the value of state-

actions is known as exploration.

One of the most effective exploration methods used, is the softmax action selection methods,

especially the Boltzmann Distribution, in the form,

𝑒𝑄𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝜏

 𝑒𝑄𝑡 𝑏 𝜏 𝑛
𝑏=1

Equation 3.4-1 Boltzmann Distribution for Softmax Action Selection

Where,

𝑄𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 is the Q-value of the 𝑎𝑐𝑡𝑖𝑜𝑛 in state 𝑡.

𝜏 is the temperature.

In this probabilistic method, when an agents (runner) is provided with a state percept and list

of actions (accelerations) to choose from, he chooses the acceleration whose probability of

achieving success is less than the number of times it has been selected against the other

possible actions in that state. This guarantees all actions will be explored enough times

corresponding to their success rates. This method however requires that the frequency of

state-action pair visits be tracked. Fortunately only when no prior knowledge is available is

such exhaustive exploration needed. Alternative weaker methods exist which do not require

frequency table to be maintained. See (Sutton S & Barto G). These become useful once

domain knowledge has been acquired.

The temperature 𝜏 in Equation 3.4-1 Boltzmann Distribution for Softmax Action Selectionis

used to control the balance between exploitation and exploration. During training for prior

knowledge acquisition a higher value would be set to encourage exploration whilst on the

actual competition 𝜏 would be set to a low value to encourage exploitation.

The algorithm below, implements the description given above. Note that, whenever an action

is chosen, the frequency 𝑓 is updated as well (line 14).

50

1 function DecideAcceleration(state) returns an action

2 inputs: state, which contain a set of action actions each containing a qValue Q

3 and frequency time it has been selected f

4 local variables: selectedAction, store the action that has been selected.

5 statics: 𝜏 is the temperature

6

7 selectedAction ←null

8 foreach a in actions

9 if selectedAction = null then

10 selAction ← a

11 Break

12 if 𝑓[𝑎] = 0 then

13 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛 ← 𝑎

14 break

15
 if

𝑒𝑄[𝑎] 𝜏

 𝑒𝑄[𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏] 𝜏 𝑛
𝑏=1

 <
𝑓[𝑎]

 𝑓[𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏]𝑛
𝑏=1

 then

16 selectedAction ←action

17

18 𝑓[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛] ← 𝑓[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛] + 1

19 return selection

Table 3.4-5 AgentState.BoltzmanAction Algorithm

So at this point we now know how make an agent explores and learns, what follows, is the

when to learn, where to capture the domain knowledge and, how to represent that knowledge

of successfully winning the race. There are two ways to do this.

 Online, meaning adjusting the Q-learning lookup table during the race

 Offline, meaning capturing the percept history during the race, and then adjusting the

Q-learning lookup tables, after the race (episode) is complete.

Offline learning is favored, in the case of capturing prior knowledge because it has a faster

convergence rate than does online. This is because of its rippling nature from the actual goal,

as opposed to online learning which can end up updating only one Q-value in an episode even

though several states were visited.

The algorithm below shows how Q-learning can be updated to serve as repository of domain

knowledge. It also updates the cumulative square of the error in line 16 and keeps track of the

total number of state-actions performed. This information can be used to determine whether

51

the algorithm actually convergence, by computing the root mean square. Convergence

demonstrates that the algorithm will eventually arrive to the optimal solution.

1 function OfflineQLearnEpisodePerceptHistory(

 runner, qTable, episodePerceptHistory)

2 returns updated Q-table, sum of the square of error

3 inputs: runner, the athlete who experienced the percept, contains frequency f of

4 states visited, and sum of square of the Q value error e

5 qTable, is the Q-learning look table containing states s. Each of the

6 states contain a set of actions with their corresponding Q-values.

7 episodePerceptHistory,is a stack of states-action pair representing the

8 percept history of the episode

9 local variables: currState, is the current state s and action a pair

10 prevState, is the previous state s’ and action a’ pair

11

12 currSA, prevSA ← null

13 f ← f + Count(episodePerceptHistory)

15 while prevSA in Pop(episodePerceptHistory) do

15 if currSA is not null then

16 qTable[s][a], newSqOfError ← QLearn(qTable[s][a], qTable[s’])

17 e ← e + newSqOfError

18 currSA ← prevSA

19 return qTable, e

Table 3.4-6 Runner.OfflineQLearnEpisodePerceptHistory Algorithm

And below we show how the AthleticGamesEpisode is adjusted to cater for capturing the

episode percept history and final offline Q-learning. In the algorithm below, the qTable

variable is the domain knowledge represented as a Q-lookup table. Line 22 performs the

learning part and agentStates Q-values are then updated.

Therefore to capture prior domain knowledge using the structure, we simply set a high

temperature, repeat the AthleticGameEpisode algorithm until a certain threshold of

performance is achieved by the runner. In the actual training of the athletic competition high

exploration and high exploitation were alternately applied, the temperature set were 2.0 and

0.01 respectively. In the next section we shall introduce how we measure performance.

52

1 function AthleticsGameEpisode(gameSettings)

2 inputs: gameSettings

3 local variables: track, contains the athletic environment and its competition

 rules

4 runners, the set of runner competing in the race each with a

 velocity vector v, position vector p, and energy store e,

 and race status rs

5 𝜕𝑇, the time step that elapsed since the previous game loop

 episodePerceptHistory, contains percept history of the episode

6 InitialiseAthleticEpisode

7 track ← InitializeRunningTrack(gameSettings)

8 runners ← AddRunnersRandomlyOnToTrack(gameSettings, track)

9 episodePerceptHistory ← {}

10 AthleticEpisode

11 Repeat

12 foreach r in runners

13 if rs[r]is InRace or NotStarted then

14 statePercept, rewardPercept ← Sense(r, track, runners)

15 if statePercept not in qTable then

16 Add(qTable, statePercept, rewardPercept)

17 acceleration,direction←DecideAction(r, percept, qTable)

18 v[r],v[p],r[e] ← ActuateMotion(r, acceleration, direction, 𝜕𝑇)

19 episodePerceptHistory.Push(statePercept, action)

20 until RunningEpisodeStoppingCriteria(runners, track)

21 FinalizeAthleticEpisode

22 qTable ←

 OfflineQLearnEpisodePerceptHistory(qTable, episodePerceptHistory)

23 PresentResults(runners)

Table 3.4-7: The Athletics Competition Algorithm

3.4.4 Implementing the critic for performance measure

We know have an agent who can acquire prior knowledge which can potentially converge

toward the optimal solution with more exploration. In stochastic environment however,

convergence to the optimal solution is not guaranteed. And since we do not have an agent that

behaves optimally using any other method, it becomes hard to judge when an agent has

acquired enough to be behaving rationally. In the following discussion we shall propose how

53

to introduce a critic, upon which the agent program can use as a benchmark of measuring

success in its learning experiences.

In the introduction section, we mentioned that most of the games programs today use rule-

based and fuzzy logic to implement the decision-making process for motion. We can use

current forms of expressing decision making as a benchmark for the success criteria for this

learning agent program.

A pace setter running strategy can be one example of fuzzy logic agent program that can be

implemented. Pace setters in athletics, are runners who use the strategy of sprinting off in the

beginning of the race in order to take early lead, and then gradually slowing down as energy

resources deplete. This strategy is simple because, it bases all decision making only on the

energy and speed percept of the runner, and requires no prior knowledge. It would get nastier

with more percept information added. See section 3.3, for a discussion on the percepts used

for motion. The following algorithm presents a fuzzy rule-based implementation of such a

strategy. The algorithm returns the magnitude of acceleration discretized into values [-2, -1, 0,

1, 2]. Basically the agent will accelerate to achieve high speed when it has a high energy

level, and decelerate to lower speed as energy depletes.

1 function DecidePaceSettorAcceleration(percept)

2 returns magnitude of the acceleration

3 inputs: percept, consists of the runners own speed and energy

4

5 if energy is ABUNDANTENERGY and speed has not reached PEAK then

6 return 2

7 if energy is MODERATEENERGY and speed is HIGHSPEED then

8 return -1

9 if energy is MODERATEENERGY and speed is LOWSPEED then

10 return 1

11 if energy is LOWENERGY and speed is HIGHSPEED then

12 return -2

13 if energy is LOWENERGY and speed is LOWSPEED then

14 return -1

15 if speed is WALKINGSPEED then

16 return 1

17 return 0

54

Table 3.4-8: The DecidePaceSettorAcceleration Algorithm

Now once we have the pacesetter program we can use it to implement the critic program

which measures success of prior knowledge acquisition. One way to implement the critic is to

allow it to simulate several game episodes whereby several of the runners use the Table 3.4-8:

The DecidePaceSettorAcceleration Algorithm) strategy whilst one runner uses the Table 3.4-5

AgentState.BoltzmanAction Algorithm). During the run of the critic program, the temperature

of the boltzman action algorithm is set to allow for maximum exploitation.

The numbers of wins made by the Q-learning agent are then tracked. The algorithm then

returns a value stating whether winning ratio has crossed the winning benchmark ratio. The

algorithm below implements the idea of such a critic using the description above. This

algorithm can also be extended to track the rate of convergence using the root mean square.

1 function CrossValidate(gameSettings)

2 inputs: gameSettings

3 for (episode ← 1..numOfTrainingEpisodes) then

4 AthleticGameEpisode

5 if RunnerUsingStrategyHasWon(QLearn) then

6 success ← success + 1

7 else

8 failure ← failure + 1

9 𝑤𝑖𝑛𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑖𝑜 ←
𝑠𝑢𝑐𝑐𝑒𝑠 𝑠

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

10 return winningRatio > WINNINGBENCHMARKRATIO

Table 3.4-9: The CrossValidate Algorithm

Now we have all the components available to implement the complete program that can

perform the domain knowledge acquisition. What is needed to do is, perform a sufficient large

number of game episodes of using several runners each using the exploration technique for

action selection using Boltzmann algorithm from Table 3.4-5 AgentState.BoltzmanAction

Algorithm, which at the end of each episode performs Q-learning. It is important to gradually

reduce the temperature for successful learning. Once that is done, the critic implemented

above is invoked. If successful, the agent has met the level of knowledge enough to meet

expected future success.

55

1 function AthleticPriorKnowledge(gameSettings)

2 returns agentState table that contains the updated Q-values

3

3 repeat

4 for (episode ← 1..numOfEpisodes)

5 AthleticGameEpisode(gamesSettings)

6 if CrossValidate(gamesSettings) then

7 return agentStates

8 numberOfFailures ← numberOfFailures + 1

9 if numberOfFailures exceeds a certain threshold

10 return null

11 until true

Table 3.4-10: The AthlecticPriorKnowledge Algorithm

3.4.5 Using experience to predict behavior for a larger state space

Q-learning was used in the previous section to capture prior knowledge on how to behave

optimally in this complex athletic environment where we had no domain theory. This domain

knowledge was captured by means of a look-up table consisting of a state-action pair which

had an associated Q-value to it. In an athletic running environment, however maintaining the

domain knowledge quickly becomes large and hence intractable as the distance of running is

increased, causing the state space to explode. This can also have an adverse effect on the time

complexity for decision making this dynamic environment. As an example using the percepts

described in Table 3.3-5: Runner motion percept values) can explode to 30 million state-

action pair if an exhaustive state search is performed. It would also take much longer time for

convergence to take place during training. The table below illustrates the growth on the size a

function of the distance to run a standard athletic competition.

56

Now if every individual runner would store his own motion domain knowledge using a look-

up table, the games loop would be incapable to meeting the time requirements, due to the

time-and-space complexity of the q-tables alone.

In this section, we shall see how we can use neural networks to model this domain knowledge

such that it solves the problem described above whilst retaining the power of Q-learning on a

sequential, stochastic, partially observable, multi-agent, and dynamic environment.

3.4.6 Using neural networks to represent Q-learning

As was introduced in section 2.3.2, neural networks can used to classify statistical

probabilistic patterns in a compact forms that also allows for generalization given the right

training. This is exactly what our problem is about; can we classify actions in a probabilistic

fashion?

Distance

to run

States

(distance,adp,atp,efficiency,speed,competitor)

State-action

(acceleration=-2,-

1,0,1,2)

100 9 × 10 × 10 × 15 × 20 × 8 = 2160000 2160000 × 5

= 10800000

200 10 × 10 × 10 × 15 × 20 × 9 = 2700000 2700000 × 5

= 13500000

400 12 × 10 × 10 × 15 × 20 × 10 = 3600000 36000000 × 5

= 18000000

800 14 × 10 × 10 × 15 × 20 × 10 = 4200000 42000000 × 5

= 21000000

1500 16 × 10 × 10 × 15 × 20 × 10 = 4800000 48000000 × 5

= 24000000

5000 18 × 10 × 10 × 15 × 20 × 10 = 5400000 54000000 × 5

= 27000000

10000 19 × 10 × 10 × 15 × 20 × 10 = 5700000 5700000 × 5

= 28500000

42000 20 × 10 × 10 × 15 × 20 × 10 = 6000000 6000000 × 5

= 30000000

Table 3.4-11: Space complexity for q-value lookup table as a function of distance to run

57

But first we need to define a mapping from Q-learning to neural networks i.e. transform the

state percept, Q-values, and Q-learning to an equivalent representation using a neural

network.

1. Mapping the q-table state percept to a neural network representation

The input layer of a neural network is the equivalent of the Q-learning state percept.

However, whereas the state percept of a Q-table is represented as a concatenation of

all state percept attributes, the input percept of a neural network consists of

decomposed percepts with each state attribute represented as an input node each

taking as input, a numerical value.

In the case of motion, using Table 3.3-5: Runner motion percept values), the q-table

state would be represented as

𝑠𝑡𝑎𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 = [𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑆𝑝𝑒𝑒𝑑_𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟_𝐴𝐷𝑃_𝐺𝑙𝑦𝑔𝑐𝑜𝑔𝑒𝑛_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑐𝑦]

The individual percepts in the state percepts would then be transformed neural

network input percepts in the following way.

 Distance percept was discretized into irregular intervals. Hence it is

appropriate to create a node for each value of the distance percept.

Specifically, a node for percept value for 1, 2, 3, 4, 5, 10, 20, 60, 100, 200,

300, 400, 600, 800, 1000, 1500, 3000, 5000, 10000, 50000. This results in 20

input nodes for the distance percept. Each of these nodes would accept either

input the value 1 or 0.

 The speed percept was discretized in regular intervals, therefore is sufficient to

use one input node that accept the discretized input of the speed.

 The competitor percept was discretized into 10 irregular intervals. Similar to

the distance percept, the appropriate thing to do is create 10 input nodes for

each percept value for FAR_AHEAD, AHEAD , JUST_AHEAD,

JOINT_LEADER, JUST_BEHIND, BEHIND, FAR_BEHIND,

VERY_FAR_BEHIND, EXTREMELY_BEHIND , IMPOSSIBLY_BEHIND.

Each of these nodes would either accept the value 1 or 0.

 The adp, glycogen, and efficiency percept were all discretized to regular

intervals, therefore similar treatment as with the speed percept would follow.

One input node for each.

58

Pre-processing can improve the performance of a neural network (Bishop, 2007). We

have already done some of that by the treatment made on the distance and competitor

percepts. Another form of pre-processing that helps the network is to normalize all

input values, so that all input node accept value having the similar order of magnitude.

Linear transformation, i.e. scaling and translating, can be performed to achieve this. In

our case, the following can be performed.

Percept Pre-processing transformation

Distance As discussed above, increasing nodes, that accepts only 1 or 0.

Speed Can be scaled by dividing using the max speed humanly

possible. For example, in our implementation, we would divide

by 20.

Competitor As discussed above, increasing nodes, that accept only 1 or 0.

Adp Can be scaled by dividing using the max speed humanly

possible. For example, in our implementation, we would divide

by 10.

Atp Can be scaled by dividing using the max atp humanly possible.

For example, in our implementation, we would divide by 10.

Efficiency Which is expressed as a percentage can be scaled such that it

value lie between 0 and 1. For example, dividing a percentage by

100 achieves this.

Table 3.4-12: Pre-processing motion percept input for neural networks

2. Mapping q-Values to a neural network representation

The Q-values in a Q-table can be represented as values that are output from a neural

network follow activation of the outer layer nodes. Since state contain a set of actions

with associated Q-values, transforming this to a single neural network would therefore

requires to be as many output nodes as there are actions. For instance in the case of the

runner, the acceleration choice action at any state are [-2, -1, 0, 1, 2], hence five nodes

would be constructed on the output layer. The nodes in the outer layer would therefore

output Q-values when activated.

Whereas a mapping of state-action to Q-values was done through a look-up table, the

equivalent is now achieved using a neural network by accepting pre-processed state

59

values through the input layer node, and perform activating the entire network to

obtain corresponding Q-values as output.

 The following diagram, illustrates the setting on the network based on the discussion

above.

Table 3.4-13 2-layer neural network representing a Q-table

Note that based on the above discussion, the arrow flowing into the hidden layer,

perform pre-processing on the input signal of the five percepts. The pre-

processing may include splitting of the input signal into several nodes, converting

into discrete values, normalization etc. For example, the distance signal is

accepted through 10 input nodes each accepting 1 or 0.

The hidden layer is kept gray because the value of the weights flowing in and out

of the layer, and the number of nodes is still unknown.

The outer layer is represented by 5 nodes each outputting a Q-value when

activated to reflect the desirability of the acceleration action.

The activation is achieved using a roll-up operation. The algorithm below describes

how this can be implemented. The Activ function in line 8, is from the Equation 2.3-2

Neuron activation function.

Q-value for

Acceleration = 2

Q-value for

Acceleration = 1

Ouput layer Input layer

Hidden

layer

Glycogen

Adp

Speed

Efficiency

Distance

Q-value for

Acceleration = 0

 Q-value for

Acceleration = -1

Q-value for

Acceleration = -2

60

1 function NeuralNetworkRollup(neuralNetwork, statePercept)

2 returns stateOutput contain Q-value of the output layer

3 inputs: statePercept, contains the input percept

4 neuralNetwork, contain L layers, and hence L is the outer layer

5

6 stateOutput ← {}

7 foreach 𝑛𝑜𝑑𝑒𝑖 in NeuralNetwork(L)

8 s𝑡𝑎𝑡𝑒𝑂𝑢𝑡𝑝𝑢𝑡 𝑖 ← 𝐴𝑐𝑡𝑖𝑣(𝑠𝑡𝑎𝑡𝑒𝑃𝑒𝑟𝑐𝑒𝑝𝑡, 𝐿, 𝑖)

9 return stateOutput

Table 3.4-14 NeuralNetwork.Rollup Algorithm

3. Mapping q-learning to a neural network

We just saw how the physical representation of the look-up Q-value table could be

expressed as neural network mapping state to action through activation using the

rollup algorithm. Such that, they earlier Q-Learning algorithm that assumed Q-values

were stored in an explicit has to changed to retrieve Q-value by computing rollup.

The algorithm below shows how this can be implemented. Lines 6-7 now use Rollup

to compute Q-values used to update the Q-value for the prevStateAction.

1 function QLearn(neuralNetwork, currState, 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑖)

 returns the new Q-value, the square of the error

2 inputs: currState, which contains a set of action a, and reward R

3 prevStateAction, which contains the Q-value qValue

3 local variables: qValues: stores Q-value of the prevState

 newQValue: stores the new QValue

4 error, stores the square of the difference between the old and new

 Q-value

5

6 𝑞𝑉𝑎𝑙𝑢𝑒𝑠 ← 𝑅𝑜𝑙𝑙𝑢𝑝(𝑛𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘,𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒)[𝑖]

7 𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒𝑄𝑉𝑎𝑙𝑠 ← 𝑅𝑜𝑙𝑙𝑢𝑝 𝑛𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒

8 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 ← 𝑞𝑉𝑎𝑙𝑢𝑒𝑠[𝑖] + 𝛼 (𝑅 + 𝛾 𝑚𝑎𝑥𝑎𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒𝑄𝑉𝑎𝑙𝑠 –𝑞𝑉𝑎𝑙𝑢𝑒[𝑖])

9 𝑒𝑟𝑟𝑜𝑟 ← 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 − 𝑞𝑉𝑎𝑙𝑢𝑒𝑠[𝑖]

61

10 return 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒, 𝑒𝑟𝑟𝑜𝑟2

Table 3.4-15 AgentState.QLearn Algorithm

We cannot store the new Q-value that has been computed because we got rid of the Q-

table. However what can now do is to update the neural network such that it can

represent this mapping of state to Q-value. However to train a neural network using

back-propagation neural network it needs to have an example consisting of an input 𝑥

signal and a target value 𝑡. In our case, the input signal is the state and the target value

is the new Q-value that has just been learnt using Q-learning. We can therefore change

Backpropagation algorithm in Equation 2.3-5 Backpropation error in neural network

weight updateto become,

∆ 𝑥, 𝑙, 𝑖 =

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖 × (𝑄𝐿𝑒𝑎𝑟𝑛() − 𝑎𝑐𝑡𝑖𝑣(𝑥, 𝑙, 𝑖)) 𝑙 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖 ∆ 𝑥, 𝑙 + 1, 𝑗 𝑤(𝑙, 𝑖 , 𝑙 + 1, 𝑗)
𝑛

𝑗=0
𝑙 𝑖𝑠 𝑎 𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

Equation 3.4-2 Backpropation error in neural network weight update

Where 𝑡 𝑖 is now replaced by 𝑄𝐿𝑒𝑎𝑟𝑛() and the rest stays the same as explained

earlier.

A similar treatment has to be performed to the Boltzmann Algorithm in Table 3.4-5

AgentState.BoltzmanAction Algorithm exploration-exploitation. The Q-table references have

to replace by the neural network and explicit look-ups to Q-values replace with the Roll-up

function instead.

3.4.7 Achieving generalization using a neural network

Achieving the correct architecture for a neural network that generalizes well to its examples is

an art in it own right. There is numerous literature offers a vast variety method on how to do

so. There is a balance to be struck between generalization and accuracy. Initially we, assumed

a specific class of architecture of neural network that we would eventually use. That is, the

feed-forward fully connected multilayer neural network.

In fact we now narrow it to a specific type in that class, the 2 layer neural network, since

studies show that (Bishop C. M., 2007) these can represent effectively any non-linear function

given sufficient nodes in the hidden layer.

62

Hence the problem reduces to finding sufficient number of nodes in the hidden layer such that

it represents pretty accurately the behavior that the Q-table could express, whilst generalizing

to spaces that were not covered by the Q-table. Overdoing can lead to poor generalization

since the network just memorizes due to the curse of dimensionality.

Growing algorithms can be used to determine the number of nodes is. These particular types

of algorithms start off by training a network with a few nodes in the hidden layer and

gradually increase the node until stopping criteria is reached. For our particular problem, a

stopping criterion can be when the agent reaches a particular winning ratio threshold against

the pace-setter program. We can therefore adjust the Prior Knowledge Algorithm Table

3.4-10: The AthlecticPriorKnowledge Algorithm such that it now handles neural networks.

Another problem that neural network encounter during training is that can end up converging

into local minima which can result in poor performance. Initialization of weights and the

learning rate become important factor in the network converging to good minima. One

method to overcome the problem is to retrain using different value for initialization and

setting the learning rate to a low value such that training does not escaping a good minima for

more on initialization and minima see (Bishop C. M., 2007).

The algorithm below shows how this can be implemented. It starts off with a network with 1

node in the hidden layer. It trains the network and tests using different initializations of the

weight. If several attempts all fail, it adds one more node in the hidden layer and performs the

same thing again until a successful candidate is found, or the hidden layer becomes

worryingly large.

1 function AthleticPriorKnowledge()

2 returns multilayer neural network that contains the updated Q-values

3 local variables: n, is the number of node in the hidden layer

4 f, is the number of failed trials for using n nodes

5 i,j are the number of input and output layers

6 n ← 1

7 multiLayerNeuralNetwork ←InitializeNetwork(i, n, j)

8 repeat

9 for (episode ← 1..numberOfTrainingEpisodes)

10 AthleticGameEpisode(gameSettings)

63

11 if CrossValidate(gameSettings) then

12 return multiLayerNeuralNetwork

13 f ← f + 1

14 if f exceeds a certain threshold then

15 if n exceeds a certain threshold then

16 return null

17 n ← n + 1

18 multiLayerNeuralNetwork ←InitializeNetwork(i, n, j)

19 f ← 1

20 until true

Table 3.4-16: The AthlecticPriorKnowledge Algorithm

64

Chapter 4. Empirical results

In this section, we will present the results obtained from experiments made using an

implementation the athletics running competition. We will begin by briefly describing the

nature of the implemented competition. Following that we will present results based on the

three type of running strategies that were implemented .i.e. the fuzzy rule-based agent, the Q-

learning agent, and the combined Q-learning and neural network agent.

4.1 Overview of the actual athletic implementation used for the thesis

The implementation of the athletic game consisted of the following elements.

 The Running Track

The track that was implemented and shaped exactly like the one found in Olympic

athletic events. Its total running length was 400 meters (100m on the both straights

and 100m on both half circled curves). It consisted of up to 10 concentric tracks, each

measuring 1m wide. Athletes in the simulation were positioned in the track and

allowed to run on within it, just as in the case of a real life Olympic event. Way-point

logic was implemented to help the runner navigate the track. The environment was

assumed to have a force of gravity = 9.8𝑚/𝑠2, a constant coefficient of friction and

drag constant. The later are introduced to avoid entering a state of inertia. Hence they

influence the energy usage even when running is at a constant acceleration.

 The Runner

The athletes were implemented as points. The following value were assigned each to

them at the beginning of the race.

Resource Initial value Comments

Mass 60 kg Same for all runners.

Affect force and energy

calculations

Fat energy 100000 Joules The amount assume

abundant energy source

that cannot be exhausted

Its conversion rate could

provide enough glycogen

to sustain motion at 3m/s

Glycogen energy 3000..5000 Joules Glycogen is replenished by

excess fat that has been

65

converted to glucose.

Adp 5000..10000 Joules Magic number chosen that

can sustain motion at high

speeds for at most 100

meters. This source is not

replenished.

Reaction time 0.22 seconds Time between sensing and

acting

Efficiency Initially 75% Affected by anaerobic use

of glycogen

Rate of breathing oxygen 177777 Magic number chosen to

allow aerobic respiration to

sustain motion at speeds

less the 4 𝑚/𝑠

Table 4.1-1: Runner settings in the actual implemenation

 The Competition

The competition consists of a running event. The goal is run from a starting line on the

track and attempt to win the race by finishing first. The distance to run is decided at

the start of the race. A running event ends when all runners have completed the race

by disqualification or crossing the finish line. The following rules are observed.

a. Running at less than 2𝑚/𝑠2 results in a disqualification.

b. Running in the opposite direction lead to disqualification.

c. Overtake is allowed only from the outer side of the outer track

d. Blacking-out during or after the race when coming to a stop lead to a

disqualification.

e. Up to 10 runners are allowed in same event. For most cases 3 runners were at

most used.

66

4.2 Fuzzy Logic Rule Based Agent

We shall now present result obtained from an agent implemented using the pace settor

algorithm Table 3.4-8: The DecidePaceSettorAcceleration Algorithm. This will reveal the

behavior we expect the energy support.

4.2.1 Fuzzy Logic computation time in Game Loop

The graph below shows the average duration per game loop spent for varying number of

runner in an athletic game episode. The threshold per game is 1000 milliseconds / 24 frames

(game loops) = 41.67 millisecond per game loop. The growth is linear and it would require at

least 1500 runner to reach the unacceptable limit.

4.2.2 Motion and its effect on key attribute

The following table gives an overview of the dynamic of motion attributes. It present motion

performed by the pace-setter athlete agent running a 300m stretch. The logic is implemented

using fuzzy rule-based logic described in Table 3.4-8: The DecidePaceSettorAcceleration

Algorithm.

Fats falls constantly but very slowly during the

whole period of motion. As is characteristic, fat

Glycogen levels fall rapidly in the first part of

motion. This is so as to provide for the rising

0,000

0,020

0,040

0,060

0,080

0,100

1 2 3

A
ve

ra
ge

 D
u

ra
ti

o
n

 p
e

r
ga

m
e

 lo
o

p

(m
ill

is
e

co
n

d
s)

Number of runners in the athletic game

Avg. Duration per Loop

80000

90000

100000

110000

1
2

6
5

1
7

6
1

0
1

1
2

6
1

5
1

1
7

6
2

0
1

2
2

6
2

5
1

2
7

6

Fat

0

5000

10000

15000

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

Glycogen

67

converts slowly to glucose. Notice the overall

amount of fat is higher than that of glycogen or

adp.

speed in the earlier stages of motion.

Characteristically glycogen levels of

conversion to glucose are much more faster

than of fat.

Adp levels also fall rapidly in the first part of

motion. Initially though, no activity is

registered. This is because glycogen can

provide enough energy aerobically for lower

speeds. For higher speeds, adp is the main

provider because it readily converts without

need of oxygen.

The efficiency of energy conversion to atp falls

in the beginning stages as well, this indicates

that, glycogen is being converted anaerobically

at those points, releasing lactic acid, as a by

product. Also notice, the efficiency initially is

at 75% representing the amount of energy

released as heat during conversion to atp, which

is waste. This also demonstrates that for the

most part of motion, aerobic glycogen

contributes for a larger than other energy

source.

Speed rises sharply and then falls with

diminishing availability of atp. For the rest of

the period, speed becomes low and constant

thereby by putting less pressure on the energy

levels.

Distance, also falls much faster in the early

stages, and become constant for the remaining

time. Note as well, while adp is to credit for the

speeds that cause distances to be covered in a

short time, it is also demonstrates that it can

0

5000

10000

15000

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

Adp

0,5

0,6

0,7

0,8

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

Efficiency

0

5

10

15

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

Speed

0

200

400

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9
1

6
2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

Distance

68

 only sustain this for a short period.

Oxygen levels also dramatically fall initially.

This is because oxygen follows the relation

𝑜𝑥𝑦𝑔𝑒𝑛 𝛼
1

𝑠𝑝𝑒𝑒𝑑 2.

Notice that is affects, the possibility of aerobic

conversion of glycogen to atp, hence affecting

the overall efficiency of energy conversion.

Table 4.2-1 Pacesetter motion attributes in a 300 meters athletic competition

4.3 Q-Learning

 Training set and strategy

The AthlecticPriorKnowledge Algorithm introduced in Table 3.4-10: The

AthlecticPriorKnowledge Algorithm was used to train the agent. The training

consisted of at least 100000 athletic episodes of race covering distance of up to 300m.

The Q-table after training contained 96000 unique states.

 The Q-learning for non-deterministic learning Equation 2.3-1 was used for Q-value

updates.

 The Cross-validate function verified the performance of the agent. This was done by

running 10000 test episodes of up to 300meter race where the Q-learning agent

competed against the 2 pace setter agents. A cross-validate was made against the pace

settor for 10000 episodes each of a running distance of upto 300meters random

episodes. The win ratio for the q-learning agent was 0,8594.

0

10000

20000

30000

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

Oxygen

69

4.3.1 Convergence rate of Q-Learning

4.3.2 Motion and its effect on key attributes

Similar trend to pace-setter Grandual usage of glycogen as opposed to pace

settor

Grandual usage of glycogen as opposed to

pace settor

Similar to pace

The speed choice is look very different from The change is distance is more steadier than the

0
0,02
0,04
0,06
0,08

0,1

1

1
0

0
1

2
0

0
1

3
0

0
1

4
0

0
1

5
0

0
1

6
0

0
1

7
0

0
1

8
0

0
1

9
0

0
1

1
0

0
0

1

1
1

0
0

1

1
2

0
0

1

1
3

0
0

1

1
4

0
0

1

1
5

0
0

1

1
6

0
0

1

1
7

0
0

1

1
8

0
0

1

1
9

0
0

1

2
0

0
0

1

2
1

0
0

1

2
2

0
0

1

2
3

0
0

1

2
4

0
0

1

2
5

0
0

1

2
6

0
0

1

2
7

0
0

1

2
8

0
0

1

2
9

0
0

1

3
0

0
0

1

3
1

0
0

1

Root mean square of the error

90000

95000

100000

105000

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Fat

0

5000

10000

15000

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Glycogen

0

5000

10000

15000

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Adp

0,747
0,748
0,749

0,75
0,751

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Efficiency

0

5

10

15

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Speed

-200

0

200

400

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Distance

70

the pace-settor. Top speed are maintain for

longer period during the race. An explanation

for this could be the acceleleration when

maintain at 0 causes less loss of energy

one observed from the pace-settor

Nearly the entire more period of motion is

anaerobic.

Table 4.3-1 Q-learning motion attributes in a 300 meters athletic competition

0

20000

40000

60000

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1

Oxygen

71

4.4 Combined Model

4.4.1 Convergence rate of Q-Learning neural network

4.4.2 Performance of generalizing

Table 4.4-1 Impact of training strategy on the winning ratio vs. number of nodes in hidden layers

Chapter 5. Discussion

In the empirical section several experiments were performed so to attempt to answer the thesis

question. The experiments were based on the athletic competition which was implemented

using the theory discussed in Chapter 3.

0

0,02

0,04

0,06

0,08

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

R
o

o
t

M
e

an
 S

q
u

ar
e

300m Athletic Episodes

High fixed temperature

Alternating temperature

Gradually decreasing
temperature

0

10000

20000

30000

40000

50000

Gradually decreasing
temperature

High fixed temperature Alternating temperature

U
n

iq
u

e
 s

ta
te

s
vi

si
te

d
 o

n

tr
ai

n
in

g
th

e
 m

ax
im

iz
e

d

w
in

n
in

g
ra

ti
o

Neural network training strategy

0

0,2

0,4

0,6

0,8

1 2 3 4 5M
ax

im
u

m
 w

in
n

in
g

ra
ti

o
 a

ch
e

iv
e

d
 f

ro
m

2

0
0

 e
p

o
ch

s
o

f
tr

ai
n

in
g

Number of node in hidden layer

Gradually decreasing
temperature

High fixed temperature

Alternating temperature

72

The experiments were divided into three parts.

5.1 Experiment on the fuzzy rule based agent

The pace-setter agent was implemented to represent current decision-making models for

motion. The relevance of the experiment using this agent was to use him as a benchmark to

relate of the eventual agent using the proposed on the thesis question. Two experiments were

made.

The first experiment, in section 4.2.1, was to reveal the relationship of the agent to the time

complexity aspect of the game. The experiment show that the complexity of time increased

linearly with every additional agent added to the game. Following the trend it would require at

least 1500 agents to reach unacceptable limit.

The second experiment, in section 4.2.2 was intended reveal how motion attributes were

affected in the implementation of the athletic competition. The experiments revealed behavior

that is consistent with one described in section 2.2.

5.2 Experiments on the Q-learning agent

The Q-learning agent was implemented using the algorithms proposed in section 3.4.3. With

amount training described it was able to perform well and win consistently against the pace

setter, in various race with random initial configuration. One behavior that was observed in

the training of this agent was that it preferred running at high speed with zero acceleration.

Constant speeds in general turn out to be cheaper than motion involved changes in

acceleration.

5.3 Experiments on the combined Q-learning and neural network agent

´The training of the combined Q-learning and neural network consisted of the same setup as

that of the Q-learning, except for the Q-table being replace by a neural network. Training was

done using a growing algorithm described in 3.4.7 in order to find the architecture that

generalized.

73

Chapter 6. Conclusion

6.1 Summary of what was achieved

In this thesis, we introduced a model for human motion using realistic muscles energy sources

and their usage, realistic sensation and perception for motion, and realistic physics for motion.

We then proposed a model for decision-making using a combination of Q-learning and

artificial neural networks to see whether it was possible to build an agent that could achieve a

long-term goal that required motion given these realistic constraints.

An athletic competition was implemented using this model to assess the performance of the

agent. Empirical evidence revealed that, even under complex energy constraints, given

enough experience, agents were capable of learning from no prior knowledge to execute

motion that achieved long-term goals.

Using Q-learning alone to model decision-making, agents were able to learn and overcome

their energy constraints and eventually become consistently competitive. However this model

had the shortcomings of potentially crippling game play with worsening space and time

complexity.

The combined model of Q-learning and neural network showed signs of learning. It could,

eventually learning to reach the finish line of a race consistently. However it did not become

as competitive compared to the Q-learning agent. Various reasons could be the cause of weak

performance in generalization, including slow convergence, over fitting, convergence bad

local minima.

6.2 Contributions of this thesis

This thesis introduced a new solution concept on how realistic human motion can be

implemented in games using machine learning techniques which produce adaptable and

competitive behavior especially on the part of the non-player character, thus increasing the

potential of engaging game play.

In trying to address the thesis question, the thesis also produced a generic model for

implementing realistic motion that could be extended to all types of games, and also be used

as a framework for implementing motion for non-human characters as well. This model also

addressed architectural aspects of modularity and current game design giving it clean

interface to plug-in into exist games

74

6.3 Insights on future work

Realistic motion is not only governed by aspects that were addressed in this issue. As was

mentioned in the scope section 1.7, other factors play a role in the decision-making process of

realistic motion. The following area could further improve realism of human motion in games

 Metabolism: in this thesis we focused mainly catabolic activities of energy source in

motion. However we did not address the replenishment of the energy sources, which is

metabolism. By address this issue, a full cycle of the energy process will be complete,

and lead to the introduction of more aspect of realism in games, that is, proper diet.

 Environmental aspects: in this thesis we assumed some influence in the form of

friction and drag. In real life, the type of surface (such as, ice), humidity, and altitude

among play a role in motion. Motion realism can benefit from a proper account of

these factors.

75

Chapter 7. Bibliography

Adenosine triphosphate. (u.d.). Hentede 01. 06 2008 fra Wikipedia:

http://en.wikipedia.org/wiki/Adenosine_triphosphate

Athletics. (u.d.). Hentede 19. 05 2008 fra www.olympic.org - official website of the olympic

movement: http://www.olympic.org/uk/sports/programme/index_uk.asp?SportCode=AT

Bishop, C. M. (2007). Neural Networks for Pattern Recognition. Oxford.

Bishop, C. M. (2006). Pattern recognition and Machine Learning. Springer.

Body Atlas (2006). [Film].

Bourg, D. M., & Glenn, S. (2004). AI for Game Developers. O'Reilly.

Competitions - Rules and Regulations. (u.d.). Hentede 19. 05 2008 fra iaaf.org International

Association of Athletics Federation: http://www.iaaf.org/mm/Document/imported/42192.pdf

Crampton, T. (9. July 2005). For games, teamwork beats out flash. Hentede 14. May 2008 fra

International Herald Tribune: http://iht.com/articles/2005/07/08/business/ptgames09.php

David Hearn, M. P. (2004). Computer Graphics with OpenGL. Peason Prentice Hall.

Drag (physics). (u.d.). Hentede 31. 05 2008 fra Wikipedia:

http://en.wikipeida.org/wiki/Drag_(physics)

Friction. (u.d.). Hentede 31. 05 2008 fra Wikipedia: http://en.wikipedia.org/wiki/Friction

Fullerton, T., Swain, C., & Hoffman, S. (2004). Game Design Workshop. CMP Books.

Horn, R. S. (u.d.). Work and Energy in Muscles. Hentede 19. 05 2008 fra MedBio:

http://www.medbio.info/Horn/PDF%20files/muscle_metabolism.pdf

Kleinberg, J., & Tardos, E. (2006). Algorithm Design. Addison Wesley.

Matlin, M. W., & Foley, H. J. (1997). Sensation and Perception. Allyn and Bacon.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Nkya, E. (2008). Simulating a 5000km run.

Russel, S., & Norvig, P. (2003). Artificial Intelligence A Modern Approach. Prentice Hall.

76

Sutton S, R., & Barto G, A. Reinforcement Learning An Introduction. The MIT Press.

