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Abstract  

The computer games industry is increasingly being pressured to create games that are 

realistic, in the sense that rules that apply in the real physical world also do apply in computer 

games. Human motion (i.e. running and walking) is one area that is prevalent in computer 

games especially in genres such sports, action, and adventure. In real life, motion is a key 

element for all living beings if they are to engage. It is primarily governed by thought and 

actuated by muscles and their energy sources. Complex energy sources in muscles are used to 

produce force, which in turn creates motion. Currently, most games ignore, cheat, or 

implement rule-based logic to reflect the thought and muscle processes. In these cases, motion 

is not realistic.  

This thesis attempts to model realistic human motion governed by realistic energy constraints, 

but can which realistically achieve long-term goals in a competitive real world environment.  

An athletic event is used to construct a realistic competitive environment that allows us to 

focus on the energy constraints and capture the motion dynamics. Q-learning, a reinforcement 

learning method in machine learning, is then be used to model domain knowledge acquisition 

necessary for the decision making processes that produce realistic behavior for motion. 

Generalization of the behavior for larger environments using a combined Q-learning and 

neural networks model is then discussed implemented and measured.  

Based on the theoretical analysis and the empirical results from the construction of the athletic 

event, this thesis concludes that a realistic model of the energy dynamics that control the way 

we execute motion be realized and implemented whilst also allowing them to generalize due 

to evidence the learning shows convergence. This model can then be used in computer games 

to increase the realism in chase and evasion strategies. 
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Chapter 1. Introduction 

"Games will become an immersive reality that mixes the game with the real world," Lambert 

said. "As the technology develops, we will see games combining the intellectual aspects of 

chess and the physical aspects of sports."   

"A game should be an experience more intense than reality," Fan said. "For now, real life is 

still more fun than games." 

(Crampton, 2005) 

The Game Industry has been growing at a double digit rate. 90% of U.S. households with 

children have rented or owned a video or computer games, and young people in the United 

State spend an average of 20 minutes per day playing video games, making digital games the 

second most popular form of entertainment after TV. (Fullerton, Swain, & Hoffman, 2004) 

1.1 Realism in games 

With technological barriers being broken in hardware and multimedia capabilities, gamers 

have come to expect and demand more richness in the gaming experience. Aspects of games 

that were overlooked in the past are being called into question. Gamers now demand more 

realism. Realism is the implementation of real world behavior into games. This includes the 

mimicry of action and reaction of intelligence, sound, physics, lighting etc. Progress has been 

made. The evolution of 3D animated computer graphics has helped characters appear life-like 

(photorealistic). The evolution of higher sound quality has helped the gaming environment 

sound life-like and has improved interactivity. The evolution of faster processors has resulted 

in the development of engines that have helped the virtual world behave according to many 

laws of physics. The evolution of network has meant improved multiplayer capabilities 

enabling gamers to interact with intelligent beings virtually. However, these aspects have 

allowed gamers to take a closer look at non-player characters. And it has not been a pretty 

sight. 

“In recent years the quality of graphics and sound has improved such that it is now easier to 

discern nonsensical or questionable actions on the part of non-player characters.” 

“Computer Games With intelligence” – Daniel Jonson and Janet Wiles 2001 

Life-like behavior of living beings in games is lagging, especially the non-player characters. 

AI could now be the dominant feature which makes a product stand out and become 
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competitive. Implementing realistic behavior is now gaining ground. It is present and 

noticeable in some of the best selling games. The bar of what can be presented as life-like 

behavior in games is therefore being raised. 

1.2 Realistic human motion in current games 

One aspect that remains unaddressed properly is realistic human motion.  

Human motion is a basic part of many games. For the following genres it is essential. 

 Action games: In this category are first-person shooter games which involve agent 

moving around as in real combat. Chasing and evading is a key part of the strategy in the 

game, under intense physical conditions of battle. 

 Sports games: In this category lie games that simulate the experience of traditional 

sports. This is also an extremely popular genre (and includes some of the best selling 

games). Games include boxing, football, and rugby, which are physically demanding. 

 

However, in all game genres little regard is given toward implementing motion as it appears 

in reality. This is can attributed to the following reasons. 

 Biochemical processes that manage motion are complicated and hence are not 

implemented 

 The thought process for motion is implemented using weak AI because of the assumed 

intractability of the environment. These methods, typically a combination of fuzzy 

logic and rule-based A.I. can cause problems. They can lead to poor behavior because 

they either do not take into account all the percept information necessary for rational 

behavior, or if they do, they compromise reliability of the program and make it hard to 

maintain.   

This results in several issues: 

 During a chase or evasion during chase and evasion the only strategy seems to be 

direction. There seems to be no other of strategy for an exit criteria or high order 

intelligence.  

 Acceleration in player characters appears non-existent. All characters appear to be 

running at the same constant speed whether fresh from a chase or otherwise. 

 Getting tired is almost non-existent even if a highly intense muscular activity has just 

been performed. Chasing or evasion can continue infinitely unless it chooses to enter 
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one of those nonsensical trances of defeat. With the absence of constraints non-player 

character and player characters expend their resources recklessly.  

1.3 Motion in the real world 

Motion or locomotion in human beings is an important aspect of everyday life. Walking, 

running, jumping, crawling, climbing, and swimming are some of the types of motion one can 

exhibit. The ability to perform motion effectively allows living beings to achieve their goals.  

It involves aspects of physics, biology, chemistry, and decision-making to manage optimal 

motion 

In the real world, motion is achieved by exerting force using skeletal muscles on the limbs. 

This exertion of force produces a resultant acceleration/deceleration. Force can only brought 

about if there is enough chemical energy to be converted to kinetic energy. There are several 

types of chemical energy sources. Each source has its own storage limits. Conversion rates to 

kinetic energy depend on the energy store and on the type of chemical reaction (aerobically or 

anaerobically) necessary for conversion. Aerobic respiration, which sustains longer intense 

motion, is also more effective when the human is moving slower. 

Therefore, to maximize the outcome of a motion activity, humans must balance acceleration 

with this complex energy production. Given enough experiences they can optimize the right 

balance between the two. The thought processes is therefore important in achieving optimal 

results. 

1.4 Advantages of including realistic motion in games 

There are several advantages that will be achieved from implementing realistic human motion 

in games. 

 Engages players to be more strategic with their resources 

Take tennis for example: making your opponent run around the court is part of the 

strategy of tiring him. 

 Encourages cooperation in multiplayer games  

Passing the ball around in football is a key strategy in keeping players from getting 

tired instead of going at it alone no matter how good you are.  

 Potential for opening up possibilities for more physical endurance games  
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Many physical endurance sports are yet to be implemented or are unsuccessful. The 

addition of this key element may spark more interest in having athletic running events, 

rugby, tennis etc.  

 Improves the perception of life-like behavior in non-player human characters 

 Can act as a simulation to be applied to endurance sports training 

 Strong A.I. can end-up creating non-player characters that do not need to resort to 

cheating in order to compensate for their incompetence. Fairness can is a key 

component of game play. It also may open the possibility of non-player having the 

capability to adapt to the competition and hence make the game more engaging. 

 The cost of maintaining the system is minimized if strong A.I. methods are used to 

mimic behavior. This is because of their resilience to error. Developers therefore do 

not need time bug fixing their way to realistic behavior.  

1.5 Thesis question 

In this thesis, we will attempt to model realistic human motion by incorporating all the basic 

real-world dynamics that underlie human motion. This will include modeling of the muscles 

energy sources, respiration, and conversion of the chemical energy to kinetic energy. The 

effects of the forces that result from the kinetic energy production will also be discussed. 

Realistic perception and sensation, which plays a key part in how humans acquire relevant 

information about state of the environment to which the task of motion is required, will also, 

be modeled. 

Decision-making plays a key role, if a human is to achieve a goal that requires motion. Today, 

no domain theory exists on how the brain makes decisions on what force the muscles need to 

produce for motion, given the complex energy sources. But we do see that the brain does 

make choices that are rational and is capable of achieving long-term goals requiring motion 

optimally. Machine learning methods are the closest we get to mimicking realistic human 

intelligence, among them reinforcement learning is capable of producing domain knowledge 

through experience. However, it cannot support dynamic environments with large state-

spaces. Artificial neural networks, are capable of generalizing domain knowledge once it is 

known, by expressing it in a compact form that can support environment such as those for 

motion. The question for this thesis then becomes: 

“Is it possible to create realistic motion for human characters in games, based on a realistic 

energy models using a combined model of reinforcement learning and neural networks?” 
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1.6 Choice of environment to study realistic motion 

To explore the domain of motion in humans we need also choose a “real-life” environment 

that allows us to focus on the problem. Normal everyday life environments are too 

complicated to use for learning motion, due the physical configurations, and many secondary 

goals involved.  

Athletics is a competition of human physical abilities. These events are usually held in well 

defined environments governed by simple rules that allow the athletic abilities to the central 

focus. The relative simplicity makes it possible for us to focus strongly on learning human 

motion. We will focus especially on the running events of athletics. 

1.7 Scope 

There are numerous factors that impact motion. In this thesis we will focus on key factors, 

These will be include, muscles energy sources, chemical energy conversion, respiration, the 

competition, the actual force that produces movement expressed as velocity and position. 

Sensation and perception of these is also important for realistic decision making. Memory or 

prior knowledge plays a big role if agents are to learn from their experiences, which is 

typically of human behavior. 

There are also several other factors which will not be addressed in this work. To limit the 

complexity, we will assume negligible effect on these aspects. They include both internal and 

external factors. 

Internal factors: are those emanating from the human himself. Limb movement can be 

effective in optimizing the energy sources and reducing stress to the muscles. Posture can also 

reduce the effect of weight. Diet is known to also control weight, contribute to energy 

sources, and contribute to heath that is vital to the development of organs used in running. 

Exercise and practice also contribute in appropriate muscle growth, development of the lungs 

for oxygen intake, and better running strategy.  

External factors: are those factors that emanate from the environment: Wind depending on the 

direction can inhibit or assist motion. Humidity can cause the runner to spend too much 

energy ridding the body of heat. Altitude contributes to pressure change that adds to another 

force against motion. 
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1.8 Thesis contributions 

The contributions of this thesis are twofold: 

1. It proposes a solution concept that can be used to model realistic on human games 

characters based on realistic sensation and perception, realistic energy sources, 

realistic movement, and decision-making processes mimicking rational thought. 

2. Implements and evaluates the performance of such a model based on an athletic 

competition and presents workarounds, shortcoming, and ideas for further 

improvements. 

1.9 Structure of this thesis 

The remainder of the report is organized as follows. In chapter 2, we will introduce the 

background of the key concepts, which we will build this thesis upon. We will begin by an 

introduction to current game architecture and its basic parts. This will provide the context of 

the design constraints to which we model motion upon. This chapter will continue with an 

introduction on the physical and chemical aspects that brings about real-life motion, including 

the energy sources, respiration, breathing, and actual movement. An introduction on how 

decision-making processes necessary for motion will be presented and we will by introducing 

Q-learning and neural network. These methods of machine learning will later be used to 

mimic human motion decision-making processes. 

In chapter 3, we then address the question. We will start off by modeling a realistic athletic 

competition into the game architecture. Following that, we will model realistic motion 

actuation which captures breathing, energy conversion, and kinematics. Models for sensation 

and perception for realistic human will then be realized. This will also help in identifying the 

characteristics of the environment in A.I. terms, which we later use for modeling decision-

making. The final part of this chapter will then address the modeling of realistic decision 

making processes for human motion. A combined model of Q-learning and neural network 

will be proposed and argued for. 

In chapter 4, the empirical results will then be presented and discussed, focusing on key 

characteristics that address the thesis question.  

In chapter 5, we will conclude our findings by providing a summary of what was achieved, 

the contributions of this thesis, and insights on future work that can address shortcomings that 

were identified during the course of this work. 
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Chapter 2. Background 

Before we move on to describing how we can model realistic human motion, we will 

introduce several fundamental concepts that are the building block for this thesis. 

In this chapter will begin by introducing the architecture of a typical modern game. We will 

focus mainly on the game logic framework. We do this because the modeling of human 

motion will be constrained under current architecture of game development.  

The mechanisms that bring about real human motion will then be introduced. This includes 

energy conversion in muscles, breathing, and kinematics. This is a broad subject involving a 

lot of complexity and unknowns. Hence the description will only focus on aspects that are 

necessary to solve the thesis problem. This may also include the authors’ assumptions in gray 

areas. 

A brief introduction on athletics will be made as we will base the game environment on an 

athletic event. Key aspects of the competition and its rules will be introduced.  

Decision making forms the central part of this thesis; hence the later sections will briefly 

introduce realistic thought processes. AI methods, specifically Q-learning and Neural 

network,  which are used to model learning, thought and decision making, will then be 

introduced. 
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2.1 Modeling the game 

Computer games architecture usually features three basic parts:  

 Initialization: deals with the loading of the game graphics, initialization of the game 

settings. Games setting usually consist of the default settings, game rules, domain 

knowledge, location of game graphics etc. Of key interest to our thesis, the 

environment and agents involved are primarily loaded here as well. Lines 6-7 on the 

algorithm presented below describe this. 

 Game Episode 

This is the central part of the game. It manages the game plays until the criteria for 

ending is encountered (Line 15).  The episode includes a game loop which is an 

important part in handling animations in dynamic environment where refresh of the 

graphics is important. Lines 9-16 of the algorithm represent the game episode. 

Another use for it is in managing the agents that interact with the environment. Agent 

behavior can be divided in three parts, sensing the environment, decision-making, and 

actuating on the environment. 

 Finalization 

This is the final part of the game. It may include release of memory, saving updated 

games setting, and the presentation of results. See Line 16-17. 

The following algorithm presents an overview of the Game Episode algorithm. 

1 function GameEpisode(gameSettings)  

2   inputs:  gameSettings contain the default settings of the game including the   

                   domain knowledge, graphic inputs, and game rules 

3   local variables: environment, 

4                                 agents, who will be competing in the game 

5  

6 InitialiseGame 

7     environment ← InitializeEnvironment(gameSettings) 

8     agents ←InitializeAgents(gameSettings) 

9 GameEpisode 

10     repeat 

11         foreach a in agents 

12             percept ← Sense(a, environment) 

13             actions ← Decide(a, percept, [domainKnowledge]) 
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14             environment ← Act(a, actions, environment) 

15     until GameEpisodeStoppingCriteria(environment) 

16 FinalizeGame 

17     PresentResult(agents) 

Table 2.1-1: The Game Algorithm 

2.2 Producing motion 

The movement of the center-of-mass is what is termed as motion. Motion is achieved by 

sophisticated skeletal muscle contractions and dilations on the limbs. These muscles 

movements cause the limbs to rotate about the joints. 

2.2.1 Force and motion 

The limb movements cause the feet to exert a force against the ground that causes the body to 

move forwards. Force consist of a magnitude and direction, and are expressed as vectors. 

Friction and atmospheric drag work against this force created by the muscles. Motion occurs 

when the muscles force exceeds that of the opposing forces, the center-of-mass of the human 

body shifts from one position to another. The relation between the forces can be represented 

by the following relation,  

𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐹𝑚𝑢𝑠 𝑐𝑙𝑒𝑠 − 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  

Equation 2.2-1 The resultant force of motion 

Where  

𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠  is the force vector produced by the muscles, 

𝐹𝑑𝑟𝑎𝑔  is the opposing force vector caused by the atmosphere due to the resistance of 

air.  (Drag (physics)) describes on the underlying nature of this force, 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  is the opposing force vector between brough about as result of the contact 

between ground and the feet. (Friction) describes the nature of this force. 

2.2.2 Energy storage and usage 

Muscle activity requires energy. To produce energy destructive metabolism commonly known 

as catabolism should occur. Catabolism is the process that produces energy required for all 

activity in cells. In this process, large molecules cells (mostly carbohydrates or fat) break 

down to release chemical energy. This energy release provides for among other things, kinetic 

energy used to produce motion through muscles contraction. During this conversion, some 
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energy is lost as heat due to chemical activity and friction. In fact, only a ¼ of the energy is 

turned into useful power (Body Atlas, 2006). Waste (heat and carbon dioxide) by products of 

energy production is released into the blood which flows back to the heart. The conservation 

of energy can be used to describe the relation between the energy as: 

𝐸𝑐𝑒𝑚𝑖𝑐𝑎𝑙 → 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 +  𝐸𝑒𝑎𝑡  

Equation 2.2-2 Energy conversion for motion 

Where, 

𝐸𝑐𝑒𝑚𝑖𝑐𝑎𝑙 , is the chemical energy of the muscles energy sources, 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐   is the kinetic energy produces as a result of the chemical conversions. 

𝐸𝑒𝑎𝑡  is the energy lost as heat during the chemical conversions to kinetic 

energy. 

The body stores energy in various forms. However, muscles energy is mainly derived from 

Fat, Glycogen, Glucose, or ADP. To produce energy, catabolic activity has to convert them to 

ATP. ATP is the chemical compound that converts easily to kinetic energy.  

Each energy source has its own properties.  

 Fat, is a form of energy, which functions as a long term energy storage. It is in 

abundant supply and can sustain muscular activity with low intensity for a long 

periods of time. Before it can be converted to ATP, it is first converted to glucose. Its 

conversion rate to glucose is too slow for intense activities.  

 Glycogen, is a form of simple sugar which functions as a short term energy storage. It 

can readily be converted to glucose. However it is in limited supply and hence can be 

exhausted after a short period of intense muscle activity. 

 Glucose is another form of sugar which serves as an intermediate form between 

energy stores and ATP. When the body discovers that it has more than can be used 

immediately, it is converted back to glycogen. Glucose can be converted aerobically 

or anaerobically to ATP, depending on the availability of oxygen. Studies show that 

anaerobic conversion of glucose can only be sustained only for a very few minutes. 

Exhaustion of this can cause muscle pain due to rising levels of lactic acid.  

Aerobic conversion can sustain muscles activity for a long time; however it is highly 

dependent on the oxygen-rich blood being pumped to the muscles. 
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 ADP is an anaerobic source of energy. In the event that glycogen cannot meet the 

demand of energy required at the rate required aerobically, this will be used. Alone, it 

can only sustain 30 seconds of intense muscles activity. 

The brain may cease all voluntary muscles activity, if the level of carbon dioxide in the 

blood is detected to reach a certain threshold. This would cease motion, keeping the heart 

pumping only for life threatening activities. This state is commonly known as a blackout. 

Below is a table that describes the various characteristics of each the energy source.  

Primary 

Sources 

of Muscle 

Energy 

Conversion to ATP  

(note the equations below are not 

balanced. They also exclude by-

products such as heat energy) 

Conversi

on Rate  

Anaero

bic/ 

Aerobic 

Availability 

Fat   𝐹𝑎𝑡 → 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 

→ (𝑠𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒) 

 

Very 

Slow 

 Abundant 

Glycogen  𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 → 𝐺𝑙𝑢𝑐𝑜𝑠𝑒

→ (𝑠𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒) 

Slow  Moderate. 

Can sustain 

10km 

Glucose   

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑂𝑥𝑦𝑔𝑒𝑛 + 𝐴𝐷𝑃 + 𝑃𝑖

→ 𝐴𝑇𝑃 +  𝐶𝑂2

+  𝐻2𝑂 

Moderate Aerobic 

 

Produced 

from fat or 

glycogen. 

Depends on 

the 

availability 

of 𝑂2 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐴𝑇𝑃 + 𝐿𝑎𝑐𝑡𝑖𝑐 𝐴𝑐𝑖𝑑 Fast Anaerob

ic 

Low. Can 

only sustain 

90 seconds 

of intense 

muscle 

activity   

ADP  𝐴𝐷𝑃 +  𝑃𝑖 → 𝐴𝑇𝑃 

 

Very Fast Anaerob

ic 

Low. Can 

only sustain 

30 seconds 

of intense 
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muscle 

activity 

Table 2.2-1: Muscles energy sources conversion 

 

2.2.3 Aerobic respiration 

Aerobic respiration is therefore critical for muscle activity that lasts for longer periods.  To be 

able to supply the oxygen that is needed by these muscles, humans need to inhale air, which is 

then transported by the blood via the lungs to the muscles. Inhalation varies depending among 

other factors, the speed at which the runner is at. Oxygen inhaled is inversely proportional to 

the speed of the runner. Hence as a runner attains higher speeds through acceleration, muscles 

activity increases which implies energy consumption whilst oxygen intake decreases. If 

unchecked the runner will collapse.  

The heart also plays a central role in ensuring as much oxygen arrives to the muscles. This is 

achieved by increasing its rate of pumping blood. 

Below is a diagram that gives an overview of the process of aerobic respiration that is actually 

described in (Body Atlas, 2006). 

 

Table 2.2-2: Aerobic respiration cycle 

. 

For more on muscle energy use see (Horn), (Body Atlas, 2006). and (Adenosine 

triphosphate). 

  

Inhalation 
of Oxygen 

rich Air 
using  

Mouth 
and Nose

Filtration in 
the Lungs of 
Oxygen into 

the blood

Flow of 
Oxygen Rich 
Blood to the 

Heart for 
Distribution

Flow of 
Oxygen rich 
Blood to the 

Muscles

The Muscles
use this 

oxygen to 
produces 

energy 
which is 
used to 
produce 
Motion

Waste (heat 
and carbon 
dioxide) by 
products of 

energy 
production 

are released 
into the 
blood

Oxygen 
depleted 

blood flows  
back to the 

heart.

The Heart 
directs 
Oxygen 

depleted 
Blood to the 

Lungs

Exhalation of 
Oxygen 

depleted air 
using mouth 

and nose 
occurs
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2.3 Decision making   

All decision making processes in humans occur in the brain. This central organ is aided by 

both short and long-term memory capabilities. So with constant repetition of training, a 

human can learn to understand his competition, understand his limitations, and also make best 

use of his body and lungs in order to be successful. The heart among other things also controls 

the breathing rate, the heart beat rate all of which are central to motion. Carbon dioxide 

triggers an alarm in the brain automatically stimulating nerves that control the chest muscles 

and diaphragm. For a short time you can consciously override the breathing reflex but it is 

impossible to suffocate yourself. The heart also controls the amount of oxygen in the blood by 

detecting carbon dioxide levels. Decisions from/to the brain are done through nerves using the 

spinal cord as a passage. The follow are some of the motion decision-making process the 

brain controls summarized from (Body Atlas, 2006). 

 

Table 2.3-1: The brains role in motion 

Given the energy constraint described above, human needs to make good decisions in order 

achieve goals that require motion. In the long distance running for instance, running at full 

speed would not be wise if one is to complete a race. Chasing scenarios which are common in 

games would require decision making on how to use energy optimally before and during the 

chase if one is maximize the outcome of the activity. This is because the environment is in 

continuous change also because the object being pursued be it in motion is also changing and 

has strategies that may be unknown to the pursuer. This goes for evasion strategies as well.  

Brain

controls the 
breathing 

rate, 

controls the 
heart beat 

rate 

monitors the 
Carbon 

dioxide level 
in the blood

controls 
muscles 
activity



22 

 

2.3.1 Q-learning  

Q-learning is a reinforcement learning method that allows agents with no prior domain 

knowledge in a sequential problem how to learn to choose actions that maximize the outcome 

of a long-term goal following a series of experiences.  

The Q-learning framework consists of the environment, sensor, actions, and rewards. 

 Agent: the entity the needs to learn. In case of the runners, the agent would be that part 

of the brain that is responsible for motion decision-making. 

 Environment: consist of all entities that are affected by the action that the agent takes. 

For example, in case of the runners, the energy stores, the position of the body with 

respect to the running track can be considered part of the environment.  

 Sensors: the means in which the agent is presented an interpretation of the 

environment necessary for him to choose actions. For example, in running, sight is a 

sensor used to interpret our position with respect to the finish line. 

 Action is response the agent make that causes the environment to change state. For 

example, in the case of runners, choosing to accelerate causes the body move. 

 Reward is a numerical response from the environment to the agent that reinforces the 

action previously performed. 

The diagram below gives an overview on how the components are related at any time step 𝑡. 

Here agent senses the state, 𝑠(𝑡) of the environment, and responds by taking an action, 𝑎(𝑡) 

chosen among several possible ones in that state. The action causes the environment to 

change to a new state.  The new state, 𝑠(𝑡 + 1)  is then sensed by the agent together with a 

reward, 𝑅(𝑡 + 1). The agent’s goal is therefore to maximize the cumulative reward, 𝑅 𝑡 +

1 +  𝑅 𝑡 + 2 +  𝑅(𝑡 + 3)… that it will receive by performing these actions, this in effect 

will also allow the agent to achieve a long term goal optimally. 
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Table 2.3-2: Q-learning agent-environment framework 

The Q-learning agent program produces this optimal behavior by associating a numerical 

value, known as the Q-value to each state-action pair it has visited. The Q-value represents 

the desirability of choosing an action among several possible choices in that state. Q-values 

with higher values are more desirable. 

These Q-values are learned through the agent interacting with the environment and receiving 

rewards. The values are initially inaccurate, but with more interaction with the environment 

they get to be accurate and hence the agent becomes more consistent in achieving the goal. Q-

values can be updated as follows: 

𝑄 𝑎, 𝑠 = 𝑄 𝑎, 𝑠 + 𝛼 (𝑅 𝑠 +  𝛾  𝑄 𝑎′ , 𝑠′ −  𝑄(𝑎, 𝑠))𝑎 ′
𝑚𝑎𝑥  

Equation 2.3-1 Q-value update for a non-deterministic MDP 

where, 

𝑄 𝑎, 𝑠  is the Q-value of action 𝑎 in state 𝑠, 

𝛼 is the learning rate, 

𝑅 𝑠  is the reward at state 𝑠, 

𝛾 is the discount factor, 

𝑄 𝑎′ , 𝑠′  is the state that follows when action 𝑎 was performed in state 𝑠  

 

Environment 

Agent 

state 

s 

 

 

reward 

R  

 

 

action 

a 
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The formula, above works by slightly improving the previous Q-values 𝑄 𝑎, 𝑠 , of the 

previous state 𝑠, using the reward that was sensed 𝑅 𝑠 , and the maximum Q-value that can 

be obtained by choosing an action in the current state 𝑠′ . The rate of improvement is 

controlled by the learning rate, 𝛼. 

This specific update method presented above is relevant especially for environments that are 

stochastic in nature, meaning, there is uncertainty in the state will be produced in the next 

time step as a result of performing an action in the current state.   

The Q-learning agent program is based on the assumption that the state percept possesses the 

Markov Property. The Markov property holds when the current state percept (sometime 

including a finite state history) contains enough information to predict the future without 

having to inspect the entire percept history.  

For further reading about this method please refer to (Sutton S & Barto G), (Russel & Norvig, 

2003) and, (Mitchell, 1997). 

2.3.2 Artificial neural networks 

Artificial neural networks are known for their powerful capability of learning to classify 

statistical probabilistic patterns (Bishop C. M., 2006). The networks consist of neuron (nodes) 

that are interconnected by directed edges that carry a weight. The networks can be constructed 

in various configurations, to suit the problem, but in essence consist of three essential parts; 

the input layer, an optional hidden layer, and output layer. The networks form a mathematical 

mapping of the form  

𝑓 𝑥 → 𝑡 

Where, 

𝑥 ≡  𝑥1, 𝑥2,… , 𝑥𝑁 
𝑇 are the input signals vector accepted through the input 

layer which contains 𝑁 nodes, each node accept a value 𝑥𝑖  and, 

𝑡 ≡  𝑡1, 𝑡2,… , 𝑡𝑀 
𝑇 are output signals that are output through the output layer 

containing 𝑀 nodes, each node represent a value 𝑡𝑗 .  

The mapping 𝑓, is performed by rippling the inputs through the network using the directed 

edges and strengthening them by their weights, until they arrive at the output node. The 
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signals arriving at each node in the hidden layer or output layer, are activated, using an 

activation function in the form shown below, 

𝑎𝑗 = 𝑔  𝑤𝑗𝑖 𝑥𝑖

𝑑

𝑖=0

  

Equation 2.3-2 Neuron activation function 

Where, 

𝑎𝑗  is the output signal of neuron j, 

𝑔 is the activation function. 

𝑤𝑗𝑖  is the weight of on the edge ji, 

𝑥𝑖  is the input signal  

To represent a non-linear mapping, the activation function needs to be non-linear as well. 

Common activation functions used are the logistic and sigmoid functions, which are 

continuous, non-linear, and differentiable. The differentiable characteristic allows us to 

minimize the error during training of the network. 

A neural network can also perform the task of learning the mapping relation 𝑓, between 𝑥 and 

𝑡. The task of a learning neural network is of the following nature; to take examples 

comprising of 𝑁 observations of inputs 𝑥, together with the corresponding observations of the 

output value 𝑡, and to produce a network also that map these examples with minimal error. 

Most of the learning is done by adapting the weights 𝑤𝑗𝑖  so that the network produces correct 

outputs. The number of hidden nodes in a neural network plays a large in the networks 

capability to learn highly non-linear problems. But too many hidden nodes can also affect the 

performance of network to classify unseen examples. 

In this thesis we shall particular attention to one particular configuration, an acyclic, fully 

connected (only between nodes in adjacent layers) feed forward network. In fact, studies show 

that it is possible to represent any continuous functional mapping, using a two-layered 

network to some degree of accuracy, using a sufficient number of hidden nodes. The example 

below, serves to illustrate its essential features. 
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Table 2.3-3: An acyclic, fully connected, feed forward multilayer neural network example 

The network is acyclic because no edges flow backwards 

It is fully connected because each node receives signal from all other node in the preceding 

layer 

It is a feed forward network because the signals are directed to only flow forwards 

The oval shapes represent neurons divided into three parts to represent the accept of signals, 

activations of the sum signal and output. The network above is a two-layer network, because 

only two contain neurons that can be activated. 

The small box represent bias nodes usually possess a fixed input value and weight that are 

adapted during training. 

2.3.3 Roll-up of a neural network 

In an acyclic, fully connected feed-forward network, the activation in any node [𝑙, 𝑖] is 

computed using following recurrence relation. Activating the outer layer node causes the 

hidden layer and input layer nodes to also be activated. This is result in a roll-up of values 

through the network. 

 

Input Layer HiddenLayer Outer Layer 

0,1 

0,2 

0,3 

0,4 

1,1 

1,2 

2,1 

2,2 

2,3 

1,0 0,0 
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𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖 =

 
 

 𝑔   𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙 − 1, 𝑗 𝑤( 𝑙 − 1, 𝑗 ,  𝑙, 𝑖 )
𝑛

𝑗=0
 𝑙, 𝑖 > 0

−1 𝑖 = 0
𝑥[𝑖] 𝑙 = 0

  

Equation 2.3-3 Rollup activation function 

where, 

𝑔 is the activation function. Activation functions typically used are the sigmoid 

or the tangent hyperbolic functions. 

𝑤: (represented as vertices) are the weights usually represent a vertices, 

Nodes 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 0 =  −1, in the outer and hidden layers are known as the 

bias. 

 Nodes 𝑎𝑐𝑡𝑖𝑣 0, 𝑖 = 𝑥[𝑖] represent the value of an input vector attribute 

2.3.4 Learning using backpropagation 

Neural network learning is performed by adjusting the weights 𝑤 of the network. One 

effective method used to do this is known as backprogation. What backpropagation does is it 

adjust the weight by rippling the share of the error ∆ 𝑎, 𝑙, 𝑖 , which typically uses the intuition 

of the mean square of error which is the half the square of the difference between the expected 

output vector 𝑡 and the actual value obtained from a roll-up 𝑎𝑐𝑡𝑖𝑣(𝑎, 𝑙, 𝑖). Mean square of 

error allow for the error to minimized using the gradient descent method. Below is how the 

weight update is computed. 

𝑤( 𝑙 − 1, 𝑗 ,  𝑙, 𝑖 ) =  𝑤( 𝑙 − 1, 𝑗 ,  𝑙, 𝑖 ) +  𝛼 × 𝑎𝑐𝑡𝑖𝑣(𝑎, 𝑙 − 1, 𝑗)  × ∆(𝑎, 𝑙, 𝑖)  

Equation 2.3-4 Weight update in neural network learning 

and 

∆ 𝑎, 𝑙, 𝑖 =   

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖   × (𝑡[𝑖] − 𝑎𝑐𝑡𝑖𝑣(𝑥, 𝑙, 𝑖)) 𝑙 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖   ∆ 𝑥, 𝑙 + 1, 𝑗 𝑤( 𝑙, 𝑖 ,  𝑙 + 1, 𝑗 )
𝑛

𝑗=0
𝑙 𝑖𝑠 𝑎 𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

  

Equation 2.3-5 Backpropation error in neural network weight update 

Where, 

 𝛼: is the learning rate 
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𝑔′(): is the derivative of the activation function 

Example 

We use the network presented in Table 2.3-3: An acyclic, fully connected, feed forward 

multilayer neural network example. let 𝑙 = 2, 𝑗 = 2, 𝑖 = 3, 

Therefore, 

𝑤( 1,2 ,  2,3 ) =  𝑤( 1,2 ,  2,3 ) +  𝛼 × 𝑎𝑐𝑡𝑖𝑣(𝑥, 1,2)  × ∆(𝑥, 2,3)  

Where  

∆ 𝑎, 2,3 =  𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 2,3  × (𝑡[3] − 𝑎𝑐𝑡𝑖𝑣(𝑥, 2,3) 

For further details on neural network can be found in (Bishop, 2007) and (Mitchell, 1997) 
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Chapter 3. A game motion agent combining Q-learning and neural 

networks 

In this section, we will go about modeling an agent program that addresses the thesis 

question.  

We will begin by presenting a realistic model of an athletic game architecture and layout it 

most prominent features, whilst staying true to the classic game architecture presented earlier 

in section 2.1 . 

Following that, we shall propose a model that reflects realistic actuation for human motion. 

Here we eventually end up with an algorithmic design that captures breathing, energy 

conversion, and kinematics. 

Modeling of sensation and perception for human motion will be addressed. This analysis will 

allow us to capture the complexity of the environment that will aid us in identify the most 

appropriate agent program for the modeling motion decision-making processes. Here we will 

also propose the algorithmic design for sensation and perception. 

Finally, but most importantly, the thesis will then model the actual decision-making process 

that produces realistic motion. This is subdivided into two parts, direction and the magnitude 

of acceleration. The athletic competition will first be fully characterized in A.I. terms. 

Following that, reinforcement learning will be introduced as method for domain knowledge 

acquisition. The generalization of the domain knowledge then be addressed using a combined 

model featuring Q-learning and neural networks. Complete algorithms capturing the decision 

making for realistic motion will also be proposed. 
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3.1 Modeling the athletic competition for realistic motion 

In this section we relate a realistic athletic competition to the classic game architecture 

introduced in section 2.1. Specifically we take an Olympic running event and relate it to the 

initialization, episode, game loop, and finalization. In so doing, we demonstrate that realistic 

motion can actually be fitted easily in current game architecture without major overhauls. 

3.1.1 Initialization 

Initialization in an athletic running competition involves several aspects that are of interest to 

motion, 

 Loading of the running track and the rules of the competition described by 

(Competitions - Rules and Regulations).  

 Loading the runners who will participate, random initial positioning of them on the 

track at the start line with their initial energy configuration, and prior knowledge of 

motion. This initial state should not create any unfair advantage to any athlete. But for 

the sake of observing variations in behavior we will assume some slight randomization 

in the initial value of position and energy sources. Lines 6-9 in the algorithm below 

describes this part of the game. 

3.1.2 Episode 

The actual Olympic race easily maps to the computer game concept of an episode. Each 

athlete is required to run around a track whilst following rules of the competition until a 

stopping criterion is met. One stopping criteria that can be used is once every runner has 

finished the race, that is, either by crossing the finish line or being disqualified. In an episode, 

each runner will be required to perform a sequence of actions, mainly to produce motion. 

Such an environment is defined as sequential in AI terms. This sequence can be controlled 

using the game loop, between lines 10-16. 

3.1.3 Game loop 

This part includes sensing, perceiving, and acting logic of each runner that is participating in 

the race. It is also where the game graphics are managed. For a game that will require 

animations such as this one, it should at least be processed at least 24 times per second for 

frames refresh (David Hearn, 2004). So spending too much computation time on game logic 

is undesirable. Hence realistic human motion logic should not require too much 
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computational resources. For fairness, it may be observed that each runner is allowed a 

chance to act on each game loop is he is still in the race.  

At this point, we can already start replacing abstract terms used in Table 2.1-1: The Game 

Algorithm with more specifics.  

The algorithm below describes the analysis . 

1 function AthleticsGameEpisode(gameSettings)  

2   inputs:  gameSettings 

3   local variables: track, contains the athletic environment and its competition   

                               rules                

4                             runners, the set of runner competing in the race each with a   

                                 velocity vector v, position vector p, and energy store e,  

                                 and race status rs 

5                                𝜕𝑇, the time step that elapsed since the previous game loop 

6 InitialiseAthleticEpisode 

7     track ← InitializeRunningTrack(gameSettings) 

8     runners ← AddRunnersRandomlyOnToTrack(gameSettings, track) 

9 AthleticEpisode 

10     Repeat 

11         foreach r in runners 

12             if rs[r]is InRace or NotStarted then 

13                 percept ← Sense(r, track, runners) 

14                 acceleration,direction←DecideAction(r, percept, domainKnowledge) 

15                 v[runner],v[position],r[eStore] ←  

                  ActuateMotion(r, acceleration, direction, 𝜕𝑇) 

16     until RunningEpisodeStoppingCriteria(runners, track) 

17 FinalizeAthleticEpisode 

18     PresentResults(runners) 

Table 3.1-1: The Athletics Competition Algorithm 

It is no longer necessary maintain a runner in the game loop once he has completed the 

race, the primary action as line 12,  

The primary action runner should be making decisions upon is acceleration, split into 

its direction and magnitude component (line 14).  

The actuation of motion should at least produce a new state in velocity, position, and 

energy source for the runner (line 15). 
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3.2 Modeling actuators for realistic motion 

In this section we describe how we model actuation of motion in an athletic running 

competition. We address the 3 key components that bring about motion.  

 Breathing, which is necessary for aerobic respiration, will first be modeled, and an  

algorithm proposed.  

 Actual motion, which involves moving the center of mass from one point to another. 

Rigid body kinematics will be addressing this. 

 Lastly, energy conversions, which bring about the possibility of motion, that were 

introduced in section 2.2.2 will then be modeled and an algorithm proposed. 

3.2.1 Breathing 

Oxygen is a key component in the catabolic activities that convert glucose to ATP, which 

powers the muscles to create motion. Section 2.2, presented a detailed account of aerobic 

respiration, which led to the insight that breathing the provider of oxygen was an essential 

part of motion. Oxygen that arrived to the muscles was also affected by the speed of the 

runner, because breathing becomes harder when in motion.  Below, we present an algorithm 

that computes the amount of oxygen available to the muscles. We shall also assume a 

complex relation non-linear relation on the amount available in this form. 

𝑜𝑥𝑦𝑔𝑒𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡𝑒 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 ∝  
1

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡𝑒 𝑟𝑢𝑛𝑛𝑒𝑟2
 

Equation 3.2-1 Oxygen available of muscles 

1 function Breathe(𝑠𝑝𝑒𝑒𝑑,𝜕𝑇)  

2   returns new oxygen in blood available to muscles of runner 

3   inputs: speed, the current speed of the runner  

4               𝜕𝑇, the time step that elapsed since the previous inhalation 

5   statics:  ∝, the rate of breathing oxygen 

6  

7  𝑜2  ←  
∝  ∂T

1+ speed 2 

8 return  𝑜2 

Table 3.2-1: Runner.Breathe Algorithm 

In the actual implementation, the breathing rate was chosen, such that it could support 

running at 5m/s using only aerobic respiration of available glucose. Increasing speeds, 

would then rely on anaerobic means to provide for the energy demand. 
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3.2.2 Rigid body motion 

We stated earlier, that human motion consists of a series of complex angular movements by 

the limb skeletal muscles about their joints. To compute exactly what goes on is complicated 

and deserves a thesis in its own right, hence beyond the scope of this work. However, for the 

sake of simplicity, we will assume the resultant forces created, equals that of rigid body 

motion. After all, we are interested in the movement of the center of gravity from one point to 

another. Rigid body kinematics deals with exactly this kind of motion and contains solid 

theory based on Newtonian mechanics.  

We expressed the resultant force for human motion based on the following relation in 

Equation 2.2-1 The resultant force of motion 

𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠 − 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  

Where, 

𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠  is the force created by the muscles, primarily governed by instruction 

from the brain to accelerate by a . Hence, 𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠 = 𝑚a , assuming the human 

body is a rigid body. 

𝐹𝑑𝑟𝑎𝑔  is the opposing force created due to atmospheric resistance. i.e. wind. 

These are most quite negligible in most conditions. However we can state that, 

𝐹𝑑𝑟𝑎𝑔 ∝  𝑣 . Hence, 𝐹𝑑𝑟𝑎𝑔 ∝ 𝑘𝑣 . During an athletic competition, weather 

conditions are usually not expected to change radically in the course of the event 

hence we shall assume𝑘 = 𝑐, where c is a fixed constant for the sake of 

simplicity. 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  is the friction created by the feet contacting the ground. Running on ice 

usually explains the significance of friction. 𝐹𝑑𝑟𝑎𝑔 =  𝜇𝐹𝑁𝑜𝑟𝑚𝑎𝑙 =  𝜇𝑊 =  𝜇𝑚𝑔, 

Where 𝜇 is the coefficient of friction and 𝑊 is the weight of the solid (runner). 

In normal athletic conditions, the effect is usually not extreme and does vary 

during the time of the event because the track surface is uniformly of the same 

material, hence we assume 𝜇 = 𝑘, where k is a fixed constant for the sake of 

simplicity. 

This gives rise to the following algorithm, that allow us to compute the new velocity, position, 

and energy required, for a runner to move in a given time step  ∂T. Line 12-13 compute the 
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resultant force of the motion based taking the minimal effects of drag and friction. Lines 15-

17, computes the change in position of the runner, and the new velocity achieved. Line 18, 

computes the energy required to move the runner to the new position. 

1 function Move(runner, a, 𝑑 , 𝜕𝑇)  

2   returns new velocity of runner, new position of runner, kinetic energy required 

3   input: a, the new magnitude of the acceleration             

4              𝑑 , the new direction unit vector of the runner 

5              𝜕𝑇, the time step 

6             runner, one competing in the race containing his current velocity vector 𝒖 ,  

                     and position vector 𝒑 ,  

7   local variables 

8               𝑣 , the new velocity vector of the runner. 

9              𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 , the energy required  to produce motion 

10              𝑝′ , the new position vector of the runner 

11  

12 𝑎 ←  𝑎 × 𝑑   

13 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 ←  
𝑚𝑎 −𝑘𝑢 − 𝜇𝑚𝑔𝑑 

𝑚
                 

14  

15 𝑣 ←  𝑢  +  𝑎 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡   × 𝜕𝑇  

16 𝜕𝑝 ←  𝑢  × 𝜕𝑇 +  
1

2
𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑎𝑛𝑡  ×  𝜕𝑇2  

17 𝑝′ ,   ← 𝑝 + 𝜕𝑝   

18 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  ←  𝑚𝑎 𝜕𝑝   

19 return 𝑣 , 𝑝′ ,𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  

Table 3.2-2: Runner.Move Algorithm 

Produces linear motion using rigid body kinematics. This algorithm assumes the 

runner behave like a solid object with no rotational motion. 

3.2.3 Energy conversion 

The preceding two sections in motion actuation provided the necessary ingredients for energy 

conversions, i.e the kinetic energy required 𝐸𝑘 , and 𝑂2 available in the time step 𝜕𝑇. Here we 

model how the fulfillment of the  𝐸𝑘 , the energy required for motion is done. The theory on 

this work was presented section 2.2.2. 

The algorithm below outlines the basic essentials energy conversion that the body muscles 

undergo in order to fulfill the energy request. It first converts glycogen and fat to glucose line 
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7-9. Fat is only converted to glucose if glycogen already is below a storage limit. Any excess 

glucose that is unused is converted back to glycogen, see lines 16-17. Following the 

conversion to glycogen, production of ATP ensues in the sequence of aerobic-glucose, adp-

anaerobic, and lastly anaerobic-glucose, see lines 10-15. Atp is requested from the sources, 

only if the preceding sources cannot fulfill the requirement.  

1 function ProduceKineticEnergy(eStore, 𝑂2, 𝐸𝑘 ,𝜕𝑇)  

2   returns new energyStore of runner 

3   inputs:  𝑂2: oxygen in blood available to muscles of runner 

4                𝐸𝑘  : kinetic energy required by the muscles  

5                𝜕𝑇 : the time step´ 

6 

 

               eStore: the set of energy stores of fat, glucose, glycogen, adp, atp, and   

                     the the efficiency eff representing the amount of  lactic acid 

7 glucose ←ProduceGlucose(glycogen, 𝜕𝑇) 

8 if IsBelowStorageLimit(glycogen) then 

9     glucose ← ProduceGlucose(fat, 𝜕𝑇) 

10 if 𝐸𝑘  > 0 then 

11     glucose, 𝐸𝑘 , 𝑂2  ← ProduceATP(aerobic, glucose, 𝑂2,  𝐸𝑘 , 𝜕𝑇, eff)  

12 if 𝐸𝑘  > 0 then 

13     adp, 𝐸𝑘   ← ProduceATP(anaerobic, adp, 𝑂2,  𝐸𝑘 , 𝜕𝑇, eff)  

14 if 𝐸𝑘  > 0 then     

15     glucose, 𝐸𝑘 , 0,eff ← ProduceATP(anaerobic, glucose, 𝑂2,  𝐸𝑘 , 𝜕𝑇, eff) 

16 glycogen ← glycogen + glucose    

17 glucose ← 0 

18 return eStore 

Table 3.2-3: Runner.ProduceKineticEnergy Algorithm 

The following algorithm now presents how these different energy sources go about fulfilling 

the 𝐸𝑘  request. Table 2.2-1: Muscles energy sources conversion) is useful in accounting for 

most of what goes on in here.  

The algorithm produces ATP from either glucose or adp source depending on the eType 

requested. It does so anaerobically or aerobic depend on the rType requested. This process is 

inefficient, such that, it wastes energy through heat. This inefficiency can increase based on 

the lactic energy produced. See lines 19,28-29 for the handling of efficiency. 
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So in order to produce the energy required 𝐸𝑘 , line 3 takes into account the inefficiencies. 

Thereon, line 15-22, atp is produced using the rType and eType requested,. These chemical 

conversions reduce the energy source and the oxygen (if done aerobically).   

Lines 24-27, handles the energy that could not be fulfilled by the conversion. The functions  

 ProduceAtpAerobicallyFromGlucose,  

 ProduceAtpAnaerobicallyFromGlucose, and  

 ProduceAtpAnaerobicallyFromADP  

take into account the balancing of chemical equation and product rate described in section 

2.2.2. The conversions also assume the Law of Conservation of Energy. 

1 function ProduceEnergy(rType, eType, 𝑂2, 𝐸𝑘 ,𝜕𝑇, 𝑒𝑓𝑓)  

2   returns new energyStoreResidual of runner,  

3                 new  𝐸𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 of runner, 

4    new oxygenResidual of runner, 

5    new efficiency 

6   ínputs: 𝑂2, oxygen in blood available to muscles of runner 

7                𝐸𝑘 , kinetic energy required by the muscles  

8                𝜕𝑇, the time step 

9               eff ,the efficiency of the conversion of glucose to atp 

10               rtype, the type of conversion either aerobic or anaerobic 

11               eType, the energy type 

12  

13 𝑎𝑡𝑝𝑁𝑒𝑒𝑑 ←  
𝐸𝑘

 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
  

14  

15 if IsAerobic(rType) and 𝑂2> 0 and IsGlucose(eType) then 

16     atpProduced, oxygenResidual, energyStoreResidual ←  

       ProduceAtpAerobicallyFromGlucose(atpNeed, eType, 𝑂2) 

17  

18 if IsAnaerobic(rType) and IsGlucose(eType) then 

19     atpProduced, lacticAcidResidual, energyStoreResidual ← 

        ProduceAtpAnaerobicallyFromGlucose(atpNeed, eType) 

20  

21 if IsAnaerobic(rType) and IsADP(eType) then 

22     atpProduced, energyStoreResidual ←  
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        ProduceAtpAnaerobicallyFromADP(atpNeed, eType, 𝑂2) 

23          

24 if 𝑎𝑡𝑝𝑁𝑒𝑒𝑑 > 𝑎𝑡𝑝𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 then  

25   𝐸𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ←  𝑎𝑡𝑝𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 × 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦   

26 Else 

26     𝐸𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ←  𝐸𝑘    

27 𝐸𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← 𝐸𝑘 −  𝐸𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑    

28 if lacticAcidResidual <> 0 

29     efficiency ← lacticAcidResidual / lacticAcidFactor 

30  

31 return energyStoreResidual, 𝐸𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 , oxygenResidual, efficiency 

Table 3.2-4: Runner.ProduceEnergy Algorithm 

3.2.4 Motion actuation 

The previous discussions now allow us to describe the essential parts of motion actuation in 

concrete terms. The algorithm below puts together breathing, moving, and producing kinetic 

energy of a runner in a time step of motion. This completes the modeling of actuation of 

realistic motion. 

1 function ActuateMotion(runner, acceleration, direction, 𝜕𝑇)  

2   returns  new velocity vector of the runner,  

3                 new position vector of the runner,  

4                 newEnergyStore of the runner 

5  

6 input: runner, competing in the athletic competition, contains his speed s, and   

                        energyStore e 

7             acceleration, magnitude of the acceleration 

8             direction, direction of the acceleration 

9             𝜕𝑇, the time step that elapsed since the previous actuation 

10   local variable: 𝑂2, the amount of oxygen in the blood for the muscles 

11 𝑂2 ← Breathe(𝜕𝑇, s[runner]) 

12 velocity, position, 𝐸𝑘  ← Move(runner, acceleration, direction) 

13 eStore← ProduceKineticEnergy(𝑒 𝑟𝑢𝑛𝑛𝑒𝑟 ,𝑂2, 𝐸𝑘 , 𝜕𝑇) 

14 return velocity, position, eStore 

Table 3.2-5: Runner.AcuateMotion Algorithm 
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3.3 Modeling sensation and perception for realistic motion 

The environment dictates how motion can successfully be brought about. It is the state of the 

environment that dictates the motion decision-making process that yields an action. For 

runners, the environment consists of internal body functions and external entities. In particular 

it consists of the following:  

 The Competition 

 Ego 

 Fatigue 

In this section, we shall describe these elements in terms how runner senses and perceives 

them. It is important sensation and perception is modeled correctly. First, because it allows us 

to capture and characterize the correct percept needed for decision-making. Secondly, it 

allows us create agents that are fair, or rather are not perceived as cheating. Creating a 

sensation and perception model that allows non-player to access to a lot more information 

than a normal human being can comprehend, may lead to an unfair advantage. Here, we will 

describe the AI properties that are critical in building successful agent programs that can 

produce optimal results. For the sake of complexity, passive sensing is assumed. 

3.3.1 The competition 

“Our perceptual systems may have evolved to provide us with a sense of space that is not 

totally accurate but accurate enough to allow us to navigate the world”  

(Matlin & Foley, 1997) 

 

The competition in the athletic environment is perceived mainly in terms of the egocentric 

distance. Although not much understood on how distance is perceived, the eye can perceive 

the egocentric distance between an object of interest and the observer, using several visual 

cues  (Matlin & Foley, 1997).  The complexity of distance perception increases especially 

when the observer or the object is also moving.  Hence perceiving the distance to the fixed 

finish line is easier than perceiving the distance to a moving competitor. With this insight it is 

therefore important we include this partially observable nature in non-player character 

agents so that they are not perceived as cheating. 
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In an athletic competition, more than one runner participates in a race. In the middle distance 

events up to 18 runners compete (Athletics). Each runner attempts to win the race. So success 

for one means failure for the other. AI describes such an environment as multi-agent.  

 

This partially observable, multi-agent environment also results in an environment that is also 

stochastic. Suppose a runner A while overtaking decides to increase acceleration in order to 

take outright lead in the next time-step. However the other runner B also decides to increase 

acceleration at the same time in order to also take outright lead. This would cause none of the 

runners to take outright lead. Hence either runner cannot guarantee achieving a certain state 

based on the current state and action. This aspect introduces uncertainty. 

 

Another characteristic of this competition is that it is dynamic. The environment is in 

continuous change. At every time step, the race is in continuous change. Hence each runner is 

required to act at every response time.  

Sensing the competition information can either be done visually by observing what is the 

runners line of sight, or by detecting location of activity using hearing and turning to it, if 

runner are not in direct line of sight. 

 

In real terms, there may be many runners, making it hard to sense all of them at every time 

step. So realistically we can assume that a runner can at least sense and perceive the most 

important competitor. That is naturally the leader. In case he himself is the leader, he may 

only be interested in keeping track of the runner right behind him.  

 

The following algorithm describes perception of competitor can be implemented. The percept 

is a discretized form of the egocentric distance from the primary competitor.  

1 function PerceiveCompetitors(runner, track, runners)  

  returns percept of competitors 

2 input: runner, athlete who is perceiving the competition 

3           track, is the athletic track containing positional information and rules 

4           runners, are the set of runners participating in the competition 

5  

6 if IsLeader(runner, runners) then 

7     return PositionOfSecondRunner(runners) 

8 return PositionOfLeader(runners) 



40 

 

Table 3.3-1: Runner.PerceiveCompetitor Algorithm 

3.3.2 Ego 

This is the awareness of one’s self with respect to the external world. In motion three aspects 

are important 

 The perception of self with respect to the objective and, 

 The perception of one’s own speed. 

 Awareness of one’s self to the rules 

The discussion of distance sensation and perception was made in the previous section. It was 

stated that perception of distance was always to some extent inaccurate but less so to fixed 

goals, in this case. So we can assume the perception of distance is also inaccurate but less so 

than to dynamic competitors. 

As for perception of movement of one’s self, humans perceive movement using a measure of 

velocity. It has been demonstrated that humans are capable of a surprisingly high accurate 

perception of motion. It has also been established that there is a velocity detection threshold. 

This threshold varies depending on the cues available to aid movement perception (Matlin & 

Foley, 1997). 

These findings thus also reveal a partially observable nature in the way we perceive speed. 

The following algorithm now presents how the speed and the goal percept can be 

implemented. One way to PerceiveSpeed can be implemented, is by simply discretizing the 

magnitude of the velocity to integer accuracy.  Similarly, the PerceiveDistanceToGoal percept 

can be implemented by simply discretizing the distance to the finish line to a range of 

accuracies.  

1 function PerceiveEgo(runner, track, runners)  

  returns speed percept, goal percept 

2 input: runner, is the athlete who is perceiving the competition, and has         

               velocity vector v, and position vector p. 

3            track, is the athletic track containing positional information and rules 

4           runners, is the set of runners participating in the competition 

5  

6 return PerceiveSpeed(v[runner]), PerceiveDistanceToGoal(track, p[runner]) 

Table 3.3-2: Runner.PerceiveEgo Algorithm 
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3.3.3 Fatigue 

The last percept required for motion is fatigue. Fatigue represents the runners percept of the 

energy he has remaining available for motion. The brain can state the energy level of the 

body. Cues such as the carbon dioxide level, lactic acid, and breathing rate provides this 

information (Body Atlas, 2006). We can safely assume that it is of a partially observable 

nature. 

The following algorithm presents the percept for fatigue. It simply perceives the energy 

available based on the three constraints. 

 Glycogen level 

 ADP level 

 Efficiency 

It is unnecessary to track fat, since one can always assume its presence. Whilst glucose is 

actually a function of glycogen and fat hence can is always derived from the two sources. 

Efficiency represents the amount of lactic acid levels in the blood which cause the body to 

become inefficient in producing the necessary kinetic energy. 

Humans perceive the level of these attributes through feelings of fatigue; hence the percept is 

of a partially observable nature. One way to represent the percept is to introduce noise by 

discretizing the output, represent as a numerical value.  

1 function PerceiveFatigue(runner)  

2   returns adpPercept, glycogenPercept, efficiencyPercept 

3   inputs: runner, the athlete who is sensing the environment, who has an   

                  energyStore e containing adp, glycogen, and efficiency 

4  

5 return  

6     PerceiveEnergy(adp[e]),  

7     PercieveEnergy(glycogen[e]),  

8     PerceiveEfficiency(efficiency[e]) 

Table 3.3-3: Runner.PerceiveEgo Algorithm 

 

3.3.4 Implementing a sensation & perception 

We can now combine together all the sense and percepts for runners and describe the 

sensation and perception algorithm below. The function returns a percept given the input from 
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the track and runners. Breaking the rules or blacking out result in disqualification percept. 

Crossing the finish line results in an evaluation of his degree of winning or losing. At all other 

intermediate states in the race, the runners’ percept are a composite of ego, competition, and 

fatigue. 

1 function Sense(runner, track, runners) returns percept of motion 

2   input: runner, the athlete who is sensing the environment 

3             runners, is the set of runners participating in the competition 

4             track, is the athletic track containing positional information and rules 

5   local variables: percept, the current motion percept 

6  

7 if EnergySourcesHaveBeenExhausted(runner) 

8     percept ← DISQUALIFIED; 

9 else if HasCrossedFinishedLine(runner, track) 

10     if CannotStopWithoutBlackingOut(runner) 

11         percept ←DISQUALIFIED 

12     else if not WinnerIsClaimed(runners) 

13         percept ← “WON” + runner.PerceiveCompetitor(runners) 

14    Else 

15         percept ← ”LOST” + runner.PerceiveCompetitor (runners) 

16 else if runner.HasBrokenRacingRules(track)  

17     percept ← DISQUALIFIED 

18 Else 

19     percept ← 

20         runner.PerceiveEgo(track) +  

21         runner.PerceiveFatigue(runner.energyStore) + 

22         runner.PerceiveCompetitor(runners)  

23 return percept 

Table 3.3-4: Runner.Sense Algorithm 

The composites of ego, competition, and fatigue sensation can be broken down into the 

following attributes presented in the table below. The table also includes examples of how the 

percept values can be presented to match realistic perceptual characteristics such as partial 

observability. 
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Motion 

Senses 

Description Percept Values 

Distance  Discretized to integer values 

assumed to be meters. Interval 

increase with distance. 

Maximum distance is the 

marathon distances.  

1, 2, 3, 4, 5, 10, 20, 60, 100, 200, 300, 

400, 600, 800, 1000, 1500, 3000, 5000, 

10000, 50000 

Speed  Discretized into integer values 

of meter per second. 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 20 

Competitor  Discretized into integer values. 

Relative distance range to 

competitor presented in 

brackets. 

FAR_AHEAD (10..),  

AHEAD (5..10),  

JUST_AHEAD (0..5),  

JOINT_LEADER (0),  

JUST_BEHIND (-5..0),  

BEHIND (-10..-5),  

FAR_BEHIND (-50..-10), 

VERY_FAR_BEHIND (-100..-50), 

EXTREMELY_BEHIND (-200..-100), 

IMPOSSIBLY_BEHIND (..-200) 

ADP Discretized in integer values 

of energy measured. Ten 

equidistant ranges presented. 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Glycogen  Discretized in integer values 

of energy measured. Ten 

equidistant ranges presented. 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Efficiency Discertized into 5% ranges  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 

55, 60, 65, 70, 75 

Table 3.3-5: Runner motion percept values 

We also observe that the percept is of a Markovian nature, specifically non-deterministic 

Markov Decision Process. The percepts returned, by the Runner.Sense are sufficient to 

predict what action to take, without having to inspect the entire percept history of the agent. 

Having to inspect the percept history would make the problem intractable especially where 

the game loop place a time constraint for time spent processing game logic.  



44 

 

3.4 Modeling acceleration decision making for realistic motion 

We now move on to modeling decision-making for realistic motion. Motion relies on the 

brain to decide how much acceleration should be produced by the muscles to cause the body 

to move.  Acceleration is a vector quantity consisting to two parts, the magnitude and, the 

direction. These two work together in combination to produce optimal results in motion. The 

choice of direction during motion is an area that has occupied game programmers for a long 

time now for obstacle avoidance, chasing and evasion strategies. Various methods have been 

developed including those that use rule-based fuzzy logic, potential function-based 

movement, path finding and way point techniques (Bourg & Glenn, 2004).  In an athletic 

environment, direction is used for avoiding other runners, and to navigate the tracking using 

the shortest path. Simple techniques such as waypoints can be used to overcome the athletic 

problem. This is done simply by choosing the inner track if it is unoccupied. In this thesis, we 

will focus only on the choice of the magnitude of the acceleration and assume known 

techniques to handle the direction aspect separately. 

In the previous sections, we described the game, the actuation, the environment, and sensation 

and perception for realistic motion. It was also demonstrated that the environment was 

dynamic, stochastic, sequential, partially observable, and multi-agent, which in AI terms is 

regarded the most complex environments (Russel & Norvig, 2003). 

Agent 

Type 

Performance 

Measure 

Environment Actuators Sensors 

Runner Consistency in 

winning an 

athletic 

competition 

Competitors and self in 

motion 

 

Skeletal muscles and 

their chemical energy 

stores 

 

Breathing, heartbeat 

and blood for oxygen 

circulation 

 

The running track and 

competition rules 

Acceleration / 

Decelerate using 

Skeletal Muscles 

 

Turn using 

Skeletal Muscles 

 

Distance to 

finish line 

 

Energy 

remaining 

 

Distance to 

primary 

competitor 

 

Current speed 

Table 3.4-1: PEAS for an athletic competition 
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At this stage we can establish the performance measures, environment, actuators and sensor 

(also known as PEAS) for an agent in an athletic competition. These PEAS will play an 

important role in helping us overcome basic design issues when modeling for a rational agent.  

Table 3.4-1: PEAS for an athletic competition above summarizes them. 

This section we will address how we deal with the decision making process that produces a 

magnitude of acceleration at each time step so as to accomplish the performance measure that 

is defined. We will begin discussing how knowledge can be acquired that achieves the 

performance measure. Two methods in AI, Q-learning and neural networks will be the 

primary focus in this section, and hence we eventual propose a solution that consists of a 

combined model of the two methods. 

3.4.1 Learning in the absence of prior domain knowledge 

The athletic competition requires a runner to perform a sequence of actions in the 

competition. At each point during the race, the runner perceives the environment and almost 

instantaneously is required to instruct the skeletal limbs muscles to accelerate in order 

produce a force that results in motion. The choice of acceleration at each point in the race 

plays a fundamental part in the overall outcome. At this point we do not have the domain 

knowledge to produce a sequence of actions that lead to achieving the performance measure 

of winning in a consistent manner. Naive methods would require us to maintain a state history 

of each episode and measure each one against the other. It would require huge resources in 

terms of time and space complexity to handle a multi-agent and dynamic environment such as 

this.  

Reinforcement learning allows us to model an agent program that can learn unsupervised, that 

is, without any prior domain knowledge. Reinforcement methods are built upon dynamic 

programming methods. Dynamic programming, are powerful programming techniques for 

solving optimization problems by recursively building solution to larger sub-problems  

(Kleinberg & Tardos, 2006), thus have low computational demands in moderate state-spaces. 

Reinforcement method, however poses the following additional requirements if they are to 

work. 

1. the environment must provide feedback in terms of a reward 

2. the percepts must possess Markov property 
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The requirements combined are what known as Markov Decision Process. Fortunately, we 

already concluded in section 3.3.4 that the runners’ percept of the environment also possesses 

the non-deterministic Markov Decision Process. What remains is the reward which we 

discuss in the next section. 

3.4.2 Defining rewards percept for an athletic competition 

We now introduce the reward percept into the athletic agent. A reward is a signal provided by 

the environment to the agent to indicate the value of the action the agent has taken in a state. 

Rewards carry a numerical value; higher values encourage agents to aspire to reaching them 

whilst lower ones do otherwise. It is easy relate the reward percept to an athletic competition, 

especially at the end states of a race. High rewards would indicate winning, whilst lower one 

would indicate losing. An earlier discussion in section 2.3.1 provided a detailed discussion on 

the role played by the reward in Q-learning. 

The following table shows an example on how rewards can be perceived from the 

environment in an athletic competition. Winning is reward positive value and losing 

otherwise. Not completing the race, by either blacking out or breaking the competition rules is 

least rewarded. Losing or winning can also be present as a degree by the reward percept. In 

the athletic environment winning reward more if the nearest is even further away. Losing by 

large distance is also poorly reward as opposed to losing by a small margin of distance. This 

is done so are to encourage winning in a convincing fashion. 

State Reward 

Disqualified -1.0 

Losing far behind winner -0.5 

Losing just behind winner -0.1 

Winning just behind nearest winner 0.5 

Winning far ahead nearest loser 1.0 

All other states in the race 0.0 

Table 3.4-2 Examples of rewards for runner 
To implement this reward percept, one can simply extend the Table 3.3-4: Runner.Sense 

Algorithm to include one an extra return value containing the percept of the reward. The table 

below shows the extended version containing the handling of the reward percept. 
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1 function Sense(runner, track, runners) returns percept of state, percept of reward 

2   input: runner, the athlete who is sensing the environment 

3             runners, is the set of runners participating in the competition 

4             track, is the athletic track containing positional information and rules 

5   local variables: rewardRercept, the reward percept from the environment 

6                             statePercept, the runners motion percept 

7                             compStatePercept, the percept of the competitors 

8                                compRewardPercept, the percept of reward to the competition 

9  

10 if EnergySourcesHaveBeenExhausted(eStore) then 

11     statePercept ← DISQUALIFIED; 

12     rewardPercept ← -1; 

13 else if HasCrossedFinishedLine(runner, track) then 

14     compStatePercept, compRewardPercept ← PerceiveCompetitor(runner,runners) 

15     if CannotStopWithoutBlackingOut(runner) then 

16         statePercept ←DISQUALIFIED 

17         rewardPercept ← -1; 

18     else if not WinnerIsClaimed(runners) then 

19         statePercept ← “WON” + compStatePercept 

20         rewardPercept ←compRewardPercept 

21    else 

22         statePercept ← ”LOST” + compStatePercept 

23         rewardPercept ←compRewardPercept 

24 else if HasBrokenRacingRules(runner, track) then 

25     statePercept ← DISQUALIFIED 

26     rewardPercept ←-1 

27 else 

28     statePercept ← 

29         PerceiveEgo(runner, track) +  

30         PerceiveFatigue(runner) + 

31         PerceiveCompetitor(runner, runners) + 

32     rewardPercept ← 0 

33 return statePercept, rewardPercept 

Table 3.4-3: Runner.Sense Algorithm 

Lines 5, 6, 7, 9, 12, 14, 17, 20, 23, 26, 32 and 33 have been added or altered to 

include the handling of the reward. Line 14 receives a reward in the form of a 

variable when the runner has finished the race. Table 3.4-2 Examples of 



48 

 

rewards for runner) is used to determine the reward which depends on the 

degree of separation 

3.4.3 Acquiring prior domain knowledge  

At any real world athletic event, athletes are expected to be competent about the competition 

prior to its commencement. In A.I. it is broadly termed as prior domain knowledge. In this 

section we will describe how we can achieve modeling of this behavior. 

Prior knowledge is most commonly acquired through prior experience. One method used to 

acquire this knowledge is through training. We can allow the agent program to simulate an 

actual event and participate in it. However a normal race is multi-agent in nature. To solve 

this, we could include several copies of the running agent, in the same race, acting 

independently but sharing the same repository of domain knowledge.  

In section 2.3.1, we introduced Q-learning, a reinforcement learning method capable of 

learning optimal behavior in environment in which it has no prior knowledge. To do this, Q-

learning maintains a value called a Q-value for every state-action pair.  

This Q-value is updated using Equation 2.3-1 Q-value update for a non-deterministic MDP. 

The choice of this update method suits the stochastic nature of this athletic environment 

(Mitchell, 1997). The Q-value updated in this actually represents a probabilistic value of 

choice for an action, which can be interpreted as the probability of that action achieving the 

optimal solution. The algorithm below describes how the Q-learning update can be 

implemented. It also computes the square of the difference of the error between the old and 

the new value. The error can be used to measure the rate of convergence during training for 

prior knowledge acquisition. 

1 function Qlearn(currState, prevStateAction) returns new qValue, the square of 

the error  

2   inputs: currState, which contains a set of action a, and reward R 

               prevStateAction, which contains the Q-value qValue 

3   local variables: 

4               error, stores the square of the difference between the old and new qvalue 

5             newQValue: stores the new Qvalue 

6 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 ← 𝑞𝑉𝑎𝑙𝑢𝑒 +  𝛼 (𝑅 + 𝛾 𝑚𝑎𝑥𝑎𝑞𝑉𝑎𝑙𝑢𝑒 – 𝑞𝑉𝑎𝑙𝑢𝑒)   

7 𝑒𝑟𝑟𝑜𝑟 ← 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 − 𝑞𝑉𝑎𝑙𝑢𝑒  

8 return 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒, 𝑒𝑟𝑟𝑜𝑟2 
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Table 3.4-4 AgentState.Qlearn Algorithm 

But in order to learn, it needs to find a way to visit as many states and perform their actions so 

as to discover which action yield good long-term rewards. Discovering the value of state-

actions is known as exploration. 

One of the most effective exploration methods used, is the softmax action selection methods, 

especially the Boltzmann Distribution, in the form, 

𝑒𝑄𝑡 𝑎𝑐𝑡𝑖𝑜𝑛  𝜏 

 𝑒𝑄𝑡 𝑏 𝜏 𝑛
𝑏=1

 

Equation 3.4-1 Boltzmann Distribution for Softmax Action Selection 

Where, 

𝑄𝑡 𝑎𝑐𝑡𝑖𝑜𝑛  is the Q-value of the 𝑎𝑐𝑡𝑖𝑜𝑛 in state 𝑡.  

𝜏 is the temperature.  

In this probabilistic method, when an agents (runner) is provided with a state percept and list 

of actions (accelerations) to choose from, he chooses the acceleration whose probability of 

achieving success is less than the number of times it has been selected against the other 

possible actions in that state. This guarantees all actions will be explored enough times 

corresponding to their success rates. This method however requires that the frequency of 

state-action pair visits be tracked. Fortunately only when no prior knowledge is available is 

such exhaustive exploration needed. Alternative weaker methods exist which do not require 

frequency table to be maintained. See (Sutton S & Barto G). These become useful once 

domain knowledge has been acquired. 

The temperature 𝜏 in Equation 3.4-1 Boltzmann Distribution for Softmax Action Selectionis 

used to control the balance between exploitation and exploration. During training for prior 

knowledge acquisition a higher value would be set to encourage exploration whilst on the 

actual competition 𝜏 would be set to a low value to encourage exploitation.  

The algorithm below, implements the description given above. Note that, whenever an action 

is chosen, the frequency 𝑓 is updated as well (line 14). 
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1 function DecideAcceleration(state) returns an action  

2   inputs: state, which contain a set of action actions each containing a qValue Q                   

3                        and frequency time it has been selected f 

4   local variables: selectedAction, store the action that has been selected. 

5   statics: 𝜏 is the temperature 

6                              

7 selectedAction ←null 

8 foreach a in actions 

9     if selectedAction = null then 

10         selAction ← a 

11         Break 

12     if 𝑓[𝑎] = 0 then 

13         𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛 ←  𝑎 

14         break 

15 
    if 

𝑒𝑄[𝑎 ] 𝜏 

 𝑒𝑄[𝑎𝑐𝑡𝑖𝑜𝑛𝑠  𝑏 ] 𝜏 𝑛
𝑏=1

 <  
𝑓[𝑎]

 𝑓[𝑎𝑐𝑡𝑖𝑜𝑛𝑠  𝑏 ]𝑛
𝑏=1

 then 

16         selectedAction ←action 

17  

18 𝑓[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛] ← 𝑓[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛] + 1  

19 return selection 

Table 3.4-5 AgentState.BoltzmanAction Algorithm 

So at this point we now know how make an agent explores and learns, what follows, is the 

when to learn, where to capture the domain knowledge and, how to represent that knowledge 

of successfully winning the race. There are two ways to do this. 

 Online, meaning adjusting the Q-learning lookup table during the race 

 Offline, meaning capturing the percept history during the race, and then adjusting the 

Q-learning lookup tables, after the race (episode) is complete. 

Offline learning is favored, in the case of capturing prior knowledge because it has a faster 

convergence rate than does online. This is because of its rippling nature from the actual goal, 

as opposed to online learning which can end up updating only one Q-value in an episode even 

though several states were visited. 

The algorithm below shows how Q-learning can be updated to serve as repository of domain 

knowledge. It also updates the cumulative square of the error in line 16 and keeps track of the 

total number of state-actions performed. This information can be used to determine whether 
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the algorithm actually convergence, by computing the root mean square. Convergence 

demonstrates that the algorithm will eventually arrive to the optimal solution. 

1 function OfflineQLearnEpisodePerceptHistory( 

  runner, qTable, episodePerceptHistory)    

2   returns updated Q-table, sum of the square of error 

3   inputs: runner, the athlete who experienced the percept, contains frequency f of   

4                           states visited, and sum of square of the Q value error e 

5              qTable, is the Q-learning look table containing states s. Each of the  

6                            states contain a set of actions with their corresponding Q-values. 

7              episodePerceptHistory,is a stack of states-action pair representing the  

8                           percept history of the episode 

9   local variables: currState, is the current state s and action a pair 

10      prevState, is the previous state s’ and action a’ pair 

11  

12 currSA, prevSA ← null 

13 f ← f + Count(episodePerceptHistory) 

15 while prevSA in Pop(episodePerceptHistory) do 

15     if currSA is not null then 

16        qTable[s][a], newSqOfError  ← QLearn(qTable[s][a], qTable[s’]) 

17       e ← e + newSqOfError 

18     currSA ← prevSA     

19 return qTable, e 

Table 3.4-6 Runner.OfflineQLearnEpisodePerceptHistory Algorithm 

And below we show how the AthleticGamesEpisode is adjusted to cater for capturing the 

episode percept history and final offline Q-learning. In the algorithm below, the qTable 

variable is the domain knowledge represented as a Q-lookup table. Line 22 performs the 

learning part and agentStates Q-values are then updated. 

Therefore to capture prior domain knowledge using the structure, we simply set a high 

temperature, repeat the AthleticGameEpisode algorithm until a certain threshold of 

performance is achieved by the runner. In the actual training of the athletic competition high 

exploration and high exploitation were alternately applied, the temperature set were 2.0 and 

0.01 respectively. In the next section we shall introduce how we measure performance. 
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1 function AthleticsGameEpisode(gameSettings)  

2   inputs:  gameSettings 

3   local variables: track, contains the athletic environment and its competition   

                               rules                

4                             runners, the set of runner competing in the race each with a   

                                 velocity vector v, position vector p, and energy store e,  

                                 and race status rs 

5                                𝜕𝑇, the time step that elapsed since the previous game loop 

                             episodePerceptHistory, contains percept history of the episode 

  

6 InitialiseAthleticEpisode 

7     track ← InitializeRunningTrack(gameSettings) 

8     runners ← AddRunnersRandomlyOnToTrack(gameSettings, track) 

9     episodePerceptHistory  ← {} 

10 AthleticEpisode 

11     Repeat 

12         foreach r in runners 

13             if rs[r]is InRace or NotStarted then 

14                 statePercept, rewardPercept ← Sense(r, track, runners) 

15                 if statePercept not in qTable then  

16                     Add(qTable, statePercept, rewardPercept) 

17                   acceleration,direction←DecideAction(r, percept, qTable) 

18                 v[r],v[p],r[e] ← ActuateMotion(r, acceleration, direction, 𝜕𝑇) 

19                 episodePerceptHistory.Push(statePercept, action) 

20     until RunningEpisodeStoppingCriteria(runners, track) 

21 FinalizeAthleticEpisode 

22     qTable ←  

        OfflineQLearnEpisodePerceptHistory(qTable, episodePerceptHistory) 

23     PresentResults(runners) 

Table 3.4-7: The Athletics Competition Algorithm 

3.4.4 Implementing the critic for performance measure 

We know have an agent who can acquire prior knowledge which can potentially converge 

toward the optimal solution with more exploration. In stochastic environment however, 

convergence to the optimal solution is not guaranteed. And since we do not have an agent that 

behaves optimally using any other method, it becomes hard to judge when an agent has 

acquired enough to be behaving rationally. In the following discussion we shall propose how 
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to introduce a critic, upon which the agent program can use as a benchmark of measuring 

success in its learning experiences.  

In the introduction section, we mentioned that most of the games programs today use rule-

based and fuzzy logic to implement the decision-making process for motion. We can use 

current forms of expressing decision making as a benchmark for the success criteria for this 

learning agent program. 

A pace setter running strategy can be one example of fuzzy logic agent program that can be 

implemented. Pace setters in athletics, are runners who use the strategy of sprinting off in the 

beginning of the race in order to take early lead, and then gradually slowing down as energy 

resources deplete. This strategy is simple because, it bases all decision making only on the 

energy and speed percept of the runner, and requires no prior knowledge. It would get nastier 

with more percept information added. See section 3.3, for a discussion on the percepts used 

for motion. The following algorithm presents a fuzzy rule-based implementation of such a 

strategy. The algorithm returns the magnitude of acceleration discretized into values [-2, -1, 0, 

1, 2]. Basically the agent will accelerate to achieve high speed when it has a high energy 

level, and decelerate to lower speed as energy depletes. 

1 function DecidePaceSettorAcceleration(percept)  

2   returns magnitude of the acceleration 

3   inputs: percept, consists of the runners own speed and energy 

4  

5 if  energy is ABUNDANTENERGY and speed has not reached PEAK then 

6     return 2 

7 if energy is MODERATEENERGY and speed is HIGHSPEED then 

8     return -1 

9 if energy is MODERATEENERGY and speed is LOWSPEED then 

10     return 1 

11 if energy is LOWENERGY and speed is HIGHSPEED then 

12     return -2 

13 if energy is LOWENERGY and speed is LOWSPEED then 

14     return -1 

15 if speed is WALKINGSPEED then 

16     return 1 

17 return 0 
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Table 3.4-8: The DecidePaceSettorAcceleration Algorithm 

Now once we have the pacesetter program we can use it to implement the critic program 

which measures success of prior knowledge acquisition. One way to implement the critic is to 

allow it to simulate several game episodes whereby several of the runners use the Table 3.4-8: 

The DecidePaceSettorAcceleration Algorithm) strategy whilst one runner uses the Table 3.4-5 

AgentState.BoltzmanAction Algorithm). During the run of the critic program, the temperature 

of the boltzman action algorithm is set to allow for maximum exploitation. 

The numbers of wins made by the Q-learning agent are then tracked. The algorithm then 

returns a value stating whether winning ratio has crossed the winning benchmark ratio. The 

algorithm below implements the idea of such a critic using the description above. This 

algorithm can also be extended to track the rate of convergence using the root mean square. 

1 function CrossValidate(gameSettings) 

2   inputs: gameSettings 

3 for (episode ← 1..numOfTrainingEpisodes) then 

4    AthleticGameEpisode 

5     if RunnerUsingStrategyHasWon(QLearn) then 

6         success ← success + 1 

7    else 

8         failure ← failure + 1 

9 𝑤𝑖𝑛𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑖𝑜 ←  
𝑠𝑢𝑐𝑐𝑒𝑠 𝑠

𝑠𝑢𝑐𝑐𝑒𝑠𝑠  + 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
  

10 return winningRatio > WINNINGBENCHMARKRATIO 

Table 3.4-9: The CrossValidate Algorithm 

Now we have all the components available to implement the complete program that can 

perform the domain knowledge acquisition. What is needed to do is, perform a sufficient large 

number of game episodes of using several runners each using the exploration technique for 

action selection using Boltzmann algorithm from Table 3.4-5 AgentState.BoltzmanAction 

Algorithm, which at the end of each episode performs Q-learning. It is important to gradually 

reduce the temperature for successful learning. Once that is done, the critic implemented 

above is invoked. If successful, the agent has met the level of knowledge enough to meet 

expected future success.  
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1 function AthleticPriorKnowledge(gameSettings)  

2   returns agentState table that contains the updated Q-values 

3  

3 repeat 

4     for (episode ← 1..numOfEpisodes) 

5        AthleticGameEpisode(gamesSettings)     

6     if  CrossValidate(gamesSettings) then 

7       return agentStates 

8    numberOfFailures ← numberOfFailures + 1 

9     if numberOfFailures exceeds a certain threshold 

10        return null 

11 until true 

Table 3.4-10: The AthlecticPriorKnowledge Algorithm 

3.4.5  Using experience to predict behavior for a larger state space 

Q-learning was used in the previous section to capture prior knowledge on how to behave 

optimally in this complex athletic environment where we had no domain theory. This domain 

knowledge was captured by means of a look-up table consisting of a state-action pair which 

had an associated Q-value to it. In an athletic running environment, however maintaining the 

domain knowledge quickly becomes large and hence intractable as the distance of running is 

increased, causing the state space to explode. This can also have an adverse effect on the time 

complexity for decision making this dynamic environment. As an example using the percepts 

described in Table 3.3-5: Runner motion percept values) can explode to 30 million state-

action pair if an exhaustive state search is performed. It would also take much longer time for 

convergence to take place during training. The table below illustrates the growth on the size a 

function of the distance to run a standard athletic competition.  
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Now if every individual runner would store his own motion domain knowledge using a look-

up table, the games loop would be incapable to meeting the time requirements, due to the 

time-and-space complexity of the q-tables alone. 

In this section, we shall see how we can use neural networks to model this domain knowledge 

such that it solves the problem described above whilst retaining the power of Q-learning on a 

sequential, stochastic, partially observable, multi-agent, and dynamic environment. 

3.4.6 Using neural networks to represent Q-learning  

As was introduced in section 2.3.2, neural networks can used to classify statistical 

probabilistic patterns in a compact forms that also allows for generalization given the right 

training. This is exactly what our problem is about; can we classify actions in a probabilistic 

fashion? 

Distance 

to run 

States 

(distance,adp,atp,efficiency,speed,competitor) 

State-action 

(acceleration=-2,-

1,0,1,2) 

100   9 × 10 × 10 × 15 × 20 × 8 = 2160000 2160000 × 5

= 10800000 

200 10 × 10 × 10 × 15 × 20 × 9 = 2700000 2700000 × 5

= 13500000 

400 12 × 10 × 10 × 15 × 20 × 10 = 3600000 36000000 × 5

= 18000000 

800 14 × 10 × 10 × 15 × 20 × 10 = 4200000 42000000 × 5

= 21000000 

1500  16 × 10 × 10 × 15 × 20 × 10 = 4800000 48000000 × 5

= 24000000 

5000 18 × 10 × 10 × 15 × 20 × 10 = 5400000 54000000 × 5

= 27000000 

10000 19 × 10 × 10 × 15 × 20 × 10 = 5700000 5700000 × 5

= 28500000 

42000 20 × 10 × 10 × 15 × 20 × 10 = 6000000 6000000 × 5

= 30000000 

Table 3.4-11: Space complexity for q-value lookup table as a function of distance to run 
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But first we need to define a mapping from Q-learning to neural networks i.e. transform the 

state percept, Q-values, and Q-learning to an equivalent representation using a neural 

network. 

1. Mapping the q-table state percept to a neural network representation  

The input layer of a neural network is the equivalent of the Q-learning state percept. 

However, whereas the state percept of a Q-table is represented as a concatenation of 

all state percept attributes, the input percept of a neural network consists of 

decomposed percepts with each state attribute represented as an input node each 

taking as input, a numerical value.  

In the case of motion, using Table 3.3-5: Runner motion percept values), the q-table 

state would be represented as  

𝑠𝑡𝑎𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 =  [𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑆𝑝𝑒𝑒𝑑_𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟_𝐴𝐷𝑃_𝐺𝑙𝑦𝑔𝑐𝑜𝑔𝑒𝑛_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑐𝑦] 

The individual percepts in the state percepts would then be transformed neural 

network input percepts in the following way. 

 Distance percept was discretized into irregular intervals. Hence it is 

appropriate to create a node for each value of the distance percept. 

Specifically, a node for percept value for 1, 2, 3, 4, 5, 10, 20, 60, 100, 200, 

300, 400, 600, 800, 1000, 1500, 3000, 5000, 10000, 50000. This results in 20 

input nodes for the distance percept. Each of these nodes would accept either 

input the value 1 or 0. 

 The speed percept was discretized in regular intervals, therefore is sufficient to 

use one input node that accept the discretized input of the speed.  

 The competitor percept was discretized into 10 irregular intervals. Similar to 

the distance percept, the appropriate thing to do is create 10 input nodes for 

each percept value for FAR_AHEAD, AHEAD , JUST_AHEAD, 

JOINT_LEADER, JUST_BEHIND, BEHIND,  FAR_BEHIND, 

VERY_FAR_BEHIND, EXTREMELY_BEHIND , IMPOSSIBLY_BEHIND. 

Each of these nodes would either accept the value 1 or 0.  

 The adp, glycogen, and efficiency percept were all discretized to regular 

intervals, therefore similar treatment as with the speed percept would follow. 

One input node for each. 
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Pre-processing can improve the performance of a neural network (Bishop, 2007). We 

have already done some of that by the treatment made on the distance and competitor 

percepts. Another form of pre-processing that helps the network is to normalize all 

input values, so that all input node accept value having the similar order of magnitude. 

Linear transformation, i.e. scaling and translating, can be performed to achieve this. In 

our case, the following can be performed. 

Percept Pre-processing transformation 

Distance As discussed above, increasing nodes, that accepts only 1 or 0. 

Speed Can be scaled by dividing using the max speed humanly 

possible. For example, in our implementation, we would divide 

by 20. 

Competitor As discussed above, increasing nodes, that accept only 1 or 0. 

Adp Can be scaled by dividing using the max speed humanly 

possible. For example, in our implementation, we would divide 

by 10. 

Atp Can be scaled by dividing using the max atp humanly possible. 

For example, in our implementation, we would divide by 10. 

Efficiency Which is expressed as a percentage can be scaled such that it 

value lie between 0 and 1. For example, dividing a percentage by 

100 achieves this. 

Table 3.4-12: Pre-processing motion percept input for neural networks  

 

2. Mapping q-Values to a neural network representation 

The Q-values in a Q-table can be represented as values that are output from a neural 

network follow activation of the outer layer nodes. Since state contain a set of actions 

with associated Q-values, transforming this to a single neural network would therefore 

requires to be as many output nodes as there are actions. For instance in the case of the 

runner, the acceleration choice action at any state are [-2, -1, 0, 1, 2], hence five nodes 

would be constructed on the output layer. The nodes in the outer layer would therefore 

output Q-values when activated. 

 

Whereas a mapping of state-action to Q-values was done through a look-up table, the 

equivalent is now achieved using a neural network by accepting pre-processed state 
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values through the input layer node, and perform activating the entire network to 

obtain corresponding Q-values as output. 

 

 The following diagram, illustrates the setting on the network based on the discussion 

above. 

 

Table 3.4-13 2-layer neural network representing a Q-table 

Note that based on the above discussion, the arrow flowing into the hidden layer, 

perform pre-processing on the input signal of the five percepts. The pre-

processing may include splitting of the input signal into several nodes, converting 

into discrete values, normalization etc. For example, the distance signal is 

accepted through 10 input nodes each accepting 1 or 0. 

 

The hidden layer is kept gray because the value of the weights flowing in and out 

of the layer, and the number of nodes is still unknown. 

 

The outer layer is represented by 5 nodes each outputting a Q-value when 

activated to reflect the desirability of the acceleration action. 

 

The activation is achieved using a roll-up operation. The algorithm below describes 

how this can be implemented. The Activ function in line 8, is from the  Equation 2.3-2 

Neuron activation function. 
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1 function NeuralNetworkRollup(neuralNetwork, statePercept)  

2   returns stateOutput contain Q-value of the output layer 

3   inputs:  statePercept, contains the input percept  

4                 neuralNetwork, contain L layers, and hence L is the outer layer 

5  

6 stateOutput ← {} 

7 foreach 𝑛𝑜𝑑𝑒𝑖  in NeuralNetwork(L) 

8   s𝑡𝑎𝑡𝑒𝑂𝑢𝑡𝑝𝑢𝑡 𝑖 ← 𝐴𝑐𝑡𝑖𝑣(𝑠𝑡𝑎𝑡𝑒𝑃𝑒𝑟𝑐𝑒𝑝𝑡, 𝐿, 𝑖) 

9 return stateOutput 

Table 3.4-14 NeuralNetwork.Rollup Algorithm 

 

3. Mapping q-learning to a neural network 

We just saw how the physical representation of the look-up Q-value table could be 

expressed as neural network mapping state to action through activation using the 

rollup algorithm. Such that, they earlier Q-Learning algorithm that assumed Q-values 

were stored in an explicit has to changed to retrieve Q-value by computing rollup.  

The algorithm below shows how this can be implemented. Lines 6-7 now use Rollup 

to compute Q-values used to update the Q-value for the prevStateAction. 

1 function QLearn(neuralNetwork, currState, 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑖)  

  returns the new Q-value, the square of the error 

2   inputs: currState, which contains a set of action a, and reward R 

3               prevStateAction, which contains the Q-value qValue 

3   local variables: qValues: stores Q-value of the prevState 

                           newQValue: stores the new QValue 

4                           error, stores the square of the difference between the old and new  

                                    Q-value 

5  

6 𝑞𝑉𝑎𝑙𝑢𝑒𝑠 ← 𝑅𝑜𝑙𝑙𝑢𝑝(𝑛𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘,𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒)[𝑖]  

7 𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒𝑄𝑉𝑎𝑙𝑠 ← 𝑅𝑜𝑙𝑙𝑢𝑝 𝑛𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒   

8 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 ← 𝑞𝑉𝑎𝑙𝑢𝑒𝑠[𝑖] +  𝛼 (𝑅 + 𝛾 𝑚𝑎𝑥𝑎𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒𝑄𝑉𝑎𝑙𝑠 –𝑞𝑉𝑎𝑙𝑢𝑒[𝑖])   

9 𝑒𝑟𝑟𝑜𝑟 ← 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒 − 𝑞𝑉𝑎𝑙𝑢𝑒𝑠[𝑖]  
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10 return 𝑛𝑒𝑤𝑄𝑉𝑎𝑙𝑢𝑒, 𝑒𝑟𝑟𝑜𝑟2 

Table 3.4-15 AgentState.QLearn Algorithm 

 

We cannot store the new Q-value that has been computed because we got rid of the Q-

table. However what can now do is to update the neural network such that it can 

represent this mapping of state to Q-value. However to train a neural network using 

back-propagation neural network it needs to have an example consisting of an input 𝑥 

signal and a target value 𝑡. In our case, the input signal is the state and the target value 

is the new Q-value that has just been learnt using Q-learning. We can therefore change 

Backpropagation algorithm in Equation 2.3-5 Backpropation error in neural network 

weight updateto become,   

∆ 𝑥, 𝑙, 𝑖 =   

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖   × (𝑄𝐿𝑒𝑎𝑟𝑛() − 𝑎𝑐𝑡𝑖𝑣(𝑥, 𝑙, 𝑖)) 𝑙 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟

𝑔′ 𝑎𝑐𝑡𝑖𝑣 𝑥, 𝑙, 𝑖   ∆ 𝑥, 𝑙 + 1, 𝑗 𝑤( 𝑙, 𝑖 ,  𝑙 + 1, 𝑗 )
𝑛

𝑗=0
𝑙 𝑖𝑠 𝑎 𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

  

Equation 3.4-2 Backpropation error in neural network weight update 

Where 𝑡 𝑖  is now replaced by 𝑄𝐿𝑒𝑎𝑟𝑛() and the rest stays the same as explained 

earlier. 

A similar treatment has to be performed to the Boltzmann Algorithm in Table 3.4-5 

AgentState.BoltzmanAction Algorithm exploration-exploitation. The Q-table references have 

to replace by the neural network and explicit look-ups to Q-values replace with the Roll-up 

function instead. 

3.4.7 Achieving generalization using a neural network 

Achieving the correct architecture for a neural network that generalizes well to its examples is 

an art in it own right. There is numerous literature offers a vast variety method on how to do 

so. There is a balance to be struck between generalization and accuracy. Initially we, assumed 

a specific class of architecture of neural network that we would eventually use. That is, the 

feed-forward fully connected multilayer neural network. 

In fact we now narrow it to a specific type in that class, the 2 layer neural network, since 

studies show that (Bishop C. M., 2007) these can represent effectively any non-linear function 

given sufficient nodes in the hidden layer. 
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Hence the problem reduces to finding sufficient number of nodes in the hidden layer such that 

it represents pretty accurately the behavior that the Q-table could express, whilst generalizing 

to spaces that were not covered by the Q-table.  Overdoing can lead to poor generalization 

since the network just memorizes due to the curse of dimensionality. 

Growing algorithms can be used to determine the number of nodes is. These particular types 

of algorithms start off by training a network with a few nodes in the hidden layer and 

gradually increase the node until stopping criteria is reached. For our particular problem, a 

stopping criterion can be when the agent reaches a particular winning ratio threshold against 

the pace-setter program. We can therefore adjust the Prior Knowledge Algorithm   Table 

3.4-10: The AthlecticPriorKnowledge Algorithm such that it now handles neural networks.  

Another problem that neural network encounter during training is that can end up converging 

into local minima which can result in poor performance. Initialization of weights and the 

learning rate become important factor in the network converging to good minima. One 

method to overcome the problem is to retrain using different value for initialization and 

setting the learning rate to a low value such that training does not escaping a good minima for 

more on initialization and minima see (Bishop C. M., 2007). 

The algorithm below shows how this can be implemented. It starts off with a network with 1 

node in the hidden layer. It trains the network and tests using different initializations of the 

weight. If several attempts all fail, it adds one more node in the hidden layer and performs the 

same thing again until a successful candidate is found, or the hidden layer becomes 

worryingly large. 

1 function AthleticPriorKnowledge()  

2   returns multilayer neural network that contains the updated Q-values 

3   local variables: n, is the number of node in the hidden layer 

4                             f, is the number of failed trials for  using n nodes 

5                            i,j are the number of input and output layers 

6 n  ← 1 

7 multiLayerNeuralNetwork  ←InitializeNetwork(i, n, j) 

8 repeat 

9     for (episode ← 1..numberOfTrainingEpisodes) 

10        AthleticGameEpisode(gameSettings)     
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11     if  CrossValidate(gameSettings) then 

12      return multiLayerNeuralNetwork 

13     f ← f + 1 

14     if f exceeds a certain threshold then 

15         if n exceeds a certain threshold then 

16             return null 

17         n ← n + 1 

18         multiLayerNeuralNetwork  ←InitializeNetwork(i, n, j) 

19         f ← 1 

20 until true 

Table 3.4-16: The AthlecticPriorKnowledge Algorithm 
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Chapter 4. Empirical results 

In this section, we will present the results obtained from experiments made using an 

implementation the athletics running competition. We will begin by briefly describing the 

nature of the implemented competition. Following that we will present results based on the 

three type of running strategies that were implemented .i.e. the fuzzy rule-based agent, the Q-

learning agent, and the combined Q-learning and neural network agent.  

4.1 Overview of the actual athletic implementation used for the thesis 

The implementation of the athletic game consisted of the following elements. 

 The Running Track 

The track that was implemented and shaped exactly like the one found in Olympic 

athletic events. Its total running length was 400 meters (100m on the both straights 

and 100m on both half circled curves). It consisted of up to 10 concentric tracks, each 

measuring 1m wide. Athletes in the simulation were positioned in the track and 

allowed to run on within it, just as in the case of a real life Olympic event. Way-point 

logic was implemented to help the runner navigate the track. The environment was 

assumed to have a force of gravity = 9.8𝑚/𝑠2, a constant coefficient of friction and 

drag constant. The later are introduced to avoid entering a state of inertia. Hence they 

influence the energy usage even when running is at a constant acceleration. 

 The Runner 

The athletes were implemented as points. The following value were assigned each to 

them  at the beginning of the race. 

Resource Initial value  Comments 

Mass 60 kg Same for all runners. 

Affect force and energy 

calculations 

Fat energy 100000 Joules The amount assume 

abundant energy source 

that cannot be exhausted 

Its conversion rate could 

provide enough glycogen 

to sustain motion at 3m/s 

Glycogen energy 3000..5000 Joules Glycogen is replenished by 

excess fat that has been 
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converted to glucose. 

Adp 5000..10000 Joules Magic number chosen that 

can sustain motion at high 

speeds for at most 100 

meters. This source is not 

replenished. 

Reaction time 0.22 seconds Time between sensing and 

acting 

Efficiency Initially 75% Affected by anaerobic use 

of glycogen 

Rate of breathing oxygen 177777 Magic number chosen to 

allow aerobic respiration to 

sustain motion at speeds 

less the 4 𝑚/𝑠 

Table 4.1-1: Runner settings in the actual implemenation 

 

 The Competition 

The competition consists of a running event. The goal is run from a starting line on the 

track and attempt to win the race by finishing first. The distance to run is decided at 

the start of the race. A running event ends when all runners have completed the race 

by disqualification or crossing the finish line. The following rules are observed. 

a. Running at less than 2𝑚/𝑠2 results in a disqualification. 

b. Running in the opposite direction lead to disqualification. 

c. Overtake is allowed only from the outer side of the outer track 

d. Blacking-out during or after the race when coming to a stop lead to a 

disqualification. 

e. Up to 10 runners are allowed in same event. For most cases 3 runners were at 

most used. 
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4.2 Fuzzy Logic Rule Based Agent 

We shall now present result obtained from an agent implemented using the pace settor 

algorithm Table 3.4-8: The DecidePaceSettorAcceleration Algorithm. This will reveal the 

behavior we expect the energy support. 

4.2.1 Fuzzy Logic computation time in Game Loop 

The graph below shows the average duration per game loop spent for varying number of 

runner in an athletic game episode. The threshold per game is 1000 milliseconds / 24 frames 

(game loops) = 41.67 millisecond per game loop. The growth is linear and it would require at 

least 1500 runner to reach the unacceptable limit. 

 

4.2.2 Motion and its effect on key attribute 

The following table gives an overview of the dynamic of motion attributes. It present motion 

performed by the pace-setter athlete agent running a 300m stretch. The logic is implemented 

using fuzzy rule-based logic described in Table 3.4-8: The DecidePaceSettorAcceleration 

Algorithm. 

  

Fats falls constantly but very slowly during the 

whole period of motion. As is characteristic, fat 
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converts slowly to glucose. Notice the overall 

amount of fat is higher than that of glycogen or 

adp. 

 

speed in the earlier stages of motion. 

Characteristically glycogen levels of 

conversion to glucose are much more faster 

than of fat. 

 

  

Adp levels also fall rapidly in the first part of 

motion. Initially though, no activity is 

registered. This is because glycogen can 

provide enough energy aerobically for lower 

speeds. For higher speeds, adp is the main 

provider because it readily converts without 

need of oxygen. 

 

The efficiency of energy conversion to atp falls 

in the beginning stages as well, this indicates 

that, glycogen is being converted anaerobically 

at those points, releasing lactic acid, as a by 

product. Also notice, the efficiency initially is 

at 75% representing the amount of energy 

released as heat during conversion to atp, which 

is waste. This also demonstrates that for the 

most part of motion, aerobic glycogen 

contributes for a larger than other energy 

source. 

 

  

Speed rises sharply and then falls with 

diminishing availability of atp. For the rest of 

the period, speed becomes low and constant 

thereby by putting less pressure on the energy 

levels. 

Distance, also falls much faster in the early 

stages, and become constant for the remaining 

time. Note as well, while adp is to credit for the 

speeds that cause distances to be covered in a 

short time, it is also demonstrates that it can 
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 only sustain this for a short period.  

 

 

 

Oxygen levels also dramatically fall initially. 

This is because oxygen follows the relation 

𝑜𝑥𝑦𝑔𝑒𝑛 𝛼 
1

𝑠𝑝𝑒𝑒𝑑 2.  

Notice that is affects, the possibility of aerobic 

conversion of glycogen to atp, hence affecting 

the overall efficiency of energy conversion. 

 

Table 4.2-1 Pacesetter motion attributes in a 300 meters athletic competition 

 

4.3 Q-Learning 

 Training set and strategy 

The AthlecticPriorKnowledge Algorithm introduced in Table 3.4-10: The 

AthlecticPriorKnowledge Algorithm was used to train the agent. The training 

consisted of at least 100000 athletic episodes of race covering distance of up to 300m. 

The Q-table after training contained 96000 unique states. 

 The Q-learning for non-deterministic learning Equation 2.3-1 was used for Q-value 

updates.  

 The Cross-validate function verified the performance of the agent. This was done by 

running 10000 test episodes of up to 300meter race where the Q-learning agent 

competed against the 2 pace setter agents. A cross-validate was made against the pace 

settor for 10000 episodes each of a running distance of upto 300meters random 

episodes. The win ratio for the q-learning agent was 0,8594. 
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4.3.1 Convergence rate of Q-Learning 

 

4.3.2 Motion and its effect on key attributes 

  

Similar trend to pace-setter Grandual usage of glycogen as opposed to pace 

settor 

  

Grandual usage of glycogen as opposed to 

pace settor 

Similar to pace  

 

  

The speed choice is look very different from The change is distance is more steadier than the 
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the pace-settor. Top speed are maintain for 

longer period during the race. An explanation 

for this could be the acceleleration when 

maintain at 0 causes less loss of energy 

one observed from the pace-settor  

 

 

Nearly the entire more period of motion is 

anaerobic. 

 

Table 4.3-1 Q-learning motion attributes in a 300 meters athletic competition 
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4.4 Combined Model 

4.4.1 Convergence rate of Q-Learning neural network 

 

4.4.2 Performance of generalizing 

 

 

Table 4.4-1  Impact of training strategy on the winning ratio vs. number of nodes in hidden layers 

Chapter 5. Discussion 

In the empirical section several experiments were performed so to attempt to answer the thesis 

question. The experiments were based on the athletic competition which was implemented 

using the theory discussed in Chapter 3.  
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The experiments were divided into three parts.  

5.1 Experiment on the fuzzy rule based agent 

The pace-setter agent was implemented to represent current decision-making models for 

motion. The relevance of the experiment using this agent was to use him as a benchmark to 

relate of the eventual agent using the proposed on the thesis question. Two experiments were 

made.  

The first experiment, in section 4.2.1, was to reveal the relationship of the agent to the time 

complexity aspect of the game. The experiment show that the complexity of time increased 

linearly with every additional agent added to the game. Following the trend it would require at 

least 1500 agents to reach unacceptable limit.  

The second experiment, in section 4.2.2 was intended reveal how motion attributes were 

affected in the implementation of the athletic competition. The experiments revealed behavior 

that is consistent with one described in section 2.2. 

5.2 Experiments on the Q-learning agent 

The Q-learning agent was implemented using the algorithms proposed in section 3.4.3. With 

amount training described it was able to perform well and win consistently against the pace 

setter, in various race with random initial configuration. One behavior that was observed in 

the training of this agent was that it preferred running at high speed with zero acceleration. 

Constant speeds in general turn out to be cheaper than motion involved changes in 

acceleration.  

5.3 Experiments on the combined Q-learning and neural network agent 

´The training of the combined Q-learning and neural network consisted of the same setup as 

that of the Q-learning, except for the Q-table being replace by a neural network. Training was 

done using a growing algorithm described in 3.4.7 in order to find the architecture that 

generalized.  
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Chapter 6. Conclusion 

6.1 Summary of what was achieved 

In this thesis, we introduced a model for human motion using realistic muscles energy sources 

and their usage, realistic sensation and perception for motion, and realistic physics for motion. 

We then proposed a model for decision-making using a combination of Q-learning and 

artificial neural networks to see whether it was possible to build an agent that could achieve a 

long-term goal that required motion given these realistic constraints. 

An athletic competition was implemented using this model to assess the performance of the 

agent. Empirical evidence revealed that, even under complex energy constraints, given 

enough experience, agents were capable of learning from no prior knowledge to execute 

motion that achieved long-term goals. 

Using Q-learning alone to model decision-making, agents were able to learn and overcome 

their energy constraints and eventually become consistently competitive. However this model 

had the shortcomings of potentially crippling game play with worsening space and time 

complexity. 

The combined model of Q-learning and neural network showed signs of learning. It could, 

eventually learning to reach the finish line of a race consistently. However it did not become 

as competitive compared to the Q-learning agent. Various reasons could be the cause of weak 

performance in generalization, including slow convergence, over fitting, convergence bad 

local minima.  

6.2 Contributions of this thesis 

This thesis introduced a new solution concept on how realistic human motion can be 

implemented in games using machine learning techniques which produce adaptable and 

competitive behavior especially on the part of the non-player character, thus increasing the 

potential of engaging game play.  

In trying to address the thesis question, the thesis also produced a generic model for 

implementing realistic motion that could be extended to all types of games, and also be used 

as a framework for implementing motion for non-human characters as well. This model also 

addressed architectural aspects of modularity and current game design giving it clean 

interface to plug-in into exist games 
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6.3 Insights on future work 

Realistic motion is not only governed by aspects that were addressed in this issue. As was 

mentioned in the scope section 1.7, other factors play a role in the decision-making process of 

realistic motion. The following area could further improve realism of human motion in games 

 Metabolism: in this thesis we focused mainly catabolic activities of energy source in 

motion. However we did not address the replenishment of the energy sources, which is 

metabolism. By address this issue, a full cycle of the energy process will be complete, 

and lead to the introduction of more aspect of realism in games, that is, proper diet. 

  Environmental aspects: in this thesis we assumed some influence in the form of 

friction and drag. In real life, the type of surface (such as, ice), humidity, and altitude 

among play a role in motion. Motion realism can benefit from a proper account of 

these factors. 
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